Using linear water wave theory,three-dimensional problems concerning the interaction of waves with spherical structures in a fluid which contains a three-layer fluid consisting of a layer of finite depth bounded above...Using linear water wave theory,three-dimensional problems concerning the interaction of waves with spherical structures in a fluid which contains a three-layer fluid consisting of a layer of finite depth bounded above by freshwater of finite depth with free surface and below by an infinite layer of water of greater density are considered.In such a situation timeharmonic waves with a given frequency can propagate with three wavenumbers.The sphere is submerged in either of the three layers.Each problem is reduced to an infinite system of linear equations by employing the method of multipoles and the system of equations is solved numerically by standard technique.The hydrodynamic forces(vertical and horizontal forces)are obtained and depicted graphically against the wavenumber.When the density ratio of the upper and middle layer is made to approximately one,curves for vertical and horizontal forces almost coincide with the corresponding curves for the case of a two-layer fluid with a free surface.This means that in the limit,the density ratio of the upper and middle layer goes to approximately one,the solution agrees with the solution for the case of a two-layer fluid with a free surface.展开更多
In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densi...In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.展开更多
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt pro...Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.展开更多
Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress te...Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress tensor by measuring strain using an HI strain cell.However,existing analytical solutions for stress calculation based on an HI strain cell in a double-layer medium are not applicable when an HI strain cell is used in a three-layer medium,leading to erroneous stress calculations.To address this issue,this paper presents a method for calculating stress tensors in a three-layer medium using numerical simulations,specifically by obtaining a constitutive matrix that relates strain measurements to stress tensors in a three-layer medium.Furthermore,using Latin hypercube sampling (LHS) and orthogonal experimental design strategies,764 groups of numerical models encompassing various stress measurement scenarios have been established and calculated using FLAC^(3D)software.Finally,a surrogate model based on artificial neural network (ANN) was developed to predict constitutive matrices,achieving a goodness of fit (R^(2)) of 0.999 and a mean squared error (MSE) of 1.254.A software program has been developed from this surrogate model for ease of use in practical engineering applications.The method’s accuracy was verified through numerical simulations,analytical solution and laboratory experiment,demonstrating its effectiveness in calculating stress in a three-layer medium.The surrogate model was applied to calculate mining-induced stress in the roadway roof rock of a coal mine,a typical case for stress measurement in a three-layer medium.Errors in stress calculations arising from the use of existing analytical solutions were corrected.The study also highlights the significant errors associated with using double-layer analytical solutions in a three-layer medium,which could lead to inappropriate engineering design.展开更多
The conjugate flows over a step with the height h_0, which might be positive or negative, was studied in a three-layer fluid and the coupled nonlinear equations were derived, with which the effects of varying height ...The conjugate flows over a step with the height h_0, which might be positive or negative, was studied in a three-layer fluid and the coupled nonlinear equations were derived, with which the effects of varying height h_0 on the existence and evolution of conjugate flows were examined. It is concluded that the conjugate flow is sharply sensitive to the thickness of fluid layers and its characteristics alters remarkably due to the existence of the step. As the flow climbs up a step (h_0>0), the conjugate flow with a convex lower interface and a concave upper interface is allowed to appear, while the flow with the concave lower interface or the simultaneous concave interfaces will be depressed. As the flow goes down a step (i.e., h_0<0), on most occasions only one kind of conjugate flow could exist, which prossesses the form with the simultaneous convex interfaces and will disappear rapidly with the increase of the step depth.展开更多
Using linear water-wave theory,wave scattering by a horizontal circular cylinder submerged in a three-layer ocean consisting of a layer of finite depth bounded above by finite depth water with free surface and below b...Using linear water-wave theory,wave scattering by a horizontal circular cylinder submerged in a three-layer ocean consisting of a layer of finite depth bounded above by finite depth water with free surface and below by an infinite layer of fluid of greater density is considered.The cylinder is submerged in either of the three layers.In such a situation time-harmonic waves with given frequency can propagate with three different wave numbers.Employing the method of multipoles the problem is reduced to an infinite system of linear equations which are solved numerically by standard technique after truncation.The transmission and reflection coefficients are obtained and depicted graphically against the wave number for all cases.In a two-layer fluid there are energy identities that exist connecting the transmission and reflection coefficients that arise.These energy identities are systematically extended to the three-fluid cases which are obtained.展开更多
Interracial internal waves in a three-layer density-stratified fluid are investigated using a singular perturbation method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave s...Interracial internal waves in a three-layer density-stratified fluid are investigated using a singular perturbation method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interracial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.展开更多
Temperature is a critical factor influencing the performance of coal catalytic hydrogasification in bubbling fluidized bed gasifiers.Numerical simulations at various temperatures(1023 K,1073 K,1123 K,and 1173 K)are co...Temperature is a critical factor influencing the performance of coal catalytic hydrogasification in bubbling fluidized bed gasifiers.Numerical simulations at various temperatures(1023 K,1073 K,1123 K,and 1173 K)are conducted to elucidate the mechanisms by which temperature affects bubble size,global reaction performance,and particle-scale reactivity.The simulation results indicate that bubble size increases at elevated temperatures,while H_(2)-char hydrogasification reactivity is enhanced.Particle trajectory analyses reveal that particles sized between 100 and 250μm undergo intense char hydrogasification in the dense phase,contributing to the formation of hot spots.To assess the impact of temperature on the particle-scale flow-transfer-reaction process,the dimensionless quantities of Reynolds,Nusselt,and Sherwood numbers,along with the solids dispersion coefficient,are calculated.It is found that higher temperatures inhibit bubble-induced mass and heat transfer.In general,3 MPa,1123 K,and 3-4 fluidization numbers are identified as the optimal conditions for particles ranging from 0 to350μm.These findings provide valuable insights into the inherent interactions between temperature and gas-particle reaction.展开更多
Based on the generalized Boussinesq equations for the three-layer fluid system, the KdV equations for the interfaces are obtained by using a perturbation method and the effect of fluid depth on the generation of solit...Based on the generalized Boussinesq equations for the three-layer fluid system, the KdV equations for the interfaces are obtained by using a perturbation method and the effect of fluid depth on the generation of solitary waves is discussed. By classifying the waves into fast-, medium- and slow-modes, it is found that the results on the slow-mode waves is qualitatively consistent with the experimental ones, and there may exist concave solitary waves on free surface, which is yet to be verified by experiments.展开更多
BACKGROUND Anxiety and depression are prevalent among patients with chronic heart failure(CHF)and can adversely contribute to treatment adherence and clinical outcomes.Poor fluid restriction adherence is a widespread ...BACKGROUND Anxiety and depression are prevalent among patients with chronic heart failure(CHF)and can adversely contribute to treatment adherence and clinical outcomes.Poor fluid restriction adherence is a widespread challenge in the management of CHF.To effectively manage disease progression and alleviate symptoms,it is crucial to identify key influencing factors to facilitate the implementation of targeted interventions.AIM To investigate the status of anxiety and depression among patients with CHF and determine the factors contributing to poor fluid restriction adherence.METHODS Three hundred CHF patients seeking medical treatment at The First Hospital of Hunan University of Traditional Chinese Medicine between June 2021 and June 2023 were included in the study.Questionnaires,including the Psychosomatic Symptom Scale,Self-Rating Anxiety Scale,Self-Rating Depression Scale,and Fluid Restriction Adherence Questionnaire were administered to patients.Based on their anxiety and depression scores,patients were categorized into anxiety/depression and non-anxiety/depression groups,as well as fluid restriction adherence and fluid restriction non-adherence groups.General patient data were collected,and univariate and logistic regression analyses were conducted to determine the occurrence of depression and anxiety.Logistic regression analysis was used to identify independent factors influencing fluid restriction adherence.RESULTS Statistically significant differences in age,New York Heart Association(NYHA)grading,marital status,educational attainment,and family support were observed between depressed and non-depressed CHF patients(P<0.05).Age,NYHA grading,marital status,educational attainment,and family support were identified as factors influencing the development of depression.The anxiety and non-anxiety groups differed statistically in terms of gender,age,NYHA grading,smoking history,alcohol consumption history,monthly income,educational attainment,and family support(P<0.05).Gender,smoking,alcohol consumption,monthly income,and educational attainment affected anxiety in these patients.The fluid restriction adherence rate was 28.0%,and thirst sensation,anxiety,and depression were identified as independent influencing factors.CONCLUSION CHF patients are susceptible to anxiety and depression,with multiple associated influencing factors.Moreover,anxiety and depression are independent factors that can influence fluid restriction adherence in these patients.展开更多
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther...In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.展开更多
Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the t...Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.展开更多
The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and ...The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and fluid mobility due to the influences of the northeast and northwest dual provenance systems.This study performed multiple experimental analyses on nine samples from the area to determine the petrological and petrophysical properties,as well as the PTS characteristics of reservoirs in different provenance-controlled regions.On this basis,the pore-throat size distribution(PSD)obtained from high-pressure mercury injection(HPMI)was utilized to convert the NMR movable fluid T2spectrum,allowing for quantitative characterization of the full PSD and the occurrence characteristics of movable fluids.A systematic analysis was conducted on the primary controlling factors affecting fluid mobility in the reservoir.The results indicated that the lithology in the eastern and western regions is lithic arkose.The eastern sandstones,being farther from the provenance,exhibit higher contents of feldspar and lithic fragments,along with the development of more dissolution pores.The reservoir possesses good petrophysical properties,low displacement pressure,and high pore-throat connectivity and homogeneity,indicating strong fluid mobility.In contrast,the western sandstones,being nearer to the provenance,exhibit poor grain sorting,high contents of lithic fragments,strong compaction and cementation effects,resulting in poor petrophysical properties,and strong pore-throat heterogeneity,revealing weak fluid mobility.The range of full PSD in the eastern reservoir is wider than that in the western reservoir,with relatively well-developed macropores.The macropores are the primary space for occurrence of movable fluids,and controls the fluid mobility of the reservoir.The effective porosity of movable fluids(EPMF)quantitatively represents the pore space occupied by movable fluids within the reservoir and correlates well with porosity,permeability,and PTS parameters,making it a valuable parameter for evaluating fluid mobility.Under the multi-provenance system,the eastern and western reservoirs underwent different sedimentation and diagenesis processes,resulting in differential distribution of reservoir mineral components and pore types,which in turn affects the PTS heterogeneity and reservoir quality.The composition and content of reservoir minerals are intrinsic factors influencing fluid mobility,while the microscopic PTS is the primary factor controlling it.Low clay mineral content,welldeveloped macropores,and weak pore-throat heterogeneity all contribute to the storage and seepage of reservoir fluids.展开更多
Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and...Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework n...Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs.展开更多
The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified i...The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified in the region via exploration.However,metallogenic sources and evolution of W remain unclear,and the existing metallogenic model has to be updated to guide further ore prospecting.Elemental and Sr-Nd isotopic data for scheelites assist in the determination of sources and evolution of the W-mineralizing fluids and metals in the district.Based on field geological survey,the scheelites in the Gejiu district can be categorized into three types:altered granite(Type Ⅰ),quartz vein(Type Ⅱ)from the Laochang deposit,and skarn(Type Ⅲ)from the Kafang deposit.Types Ⅰ and Ⅱ scheelites have low molybdenum(Mo)and strontium(Sr)contents,and Type Ⅱ scheelite has lower Sr contents than Type Ⅰ as well as higher Mo and Sr contents than Type Ⅲ scheelites.Varying Mo contents across the scheelite types suggests that the oxygen fugacity varied during ore accumulation.Type Ⅰ and Type Ⅱ scheelites exhibit similar rare earth elements(REE)patterns;Type Ⅲ scheelite contains lower REE content,particularly HREE,compared with the other scheelites.All scheelites exhibit negative Eu anomalies in the chondrite-normalized REE patterns.As the W-mineralization and two-mica granite share close spatial and temporal relationships,the negative Eu anomalies were likely inherited from the two-mica granite.Type Ⅰ and Type Ⅱ scheelites display varied(^(87)Sr/^(86)Sr)_(82 Ma)(0.7090-0.7141)andε_(Nd)(82 Ma)(from−9.9 to−5.4)values,similar to those of granite.However,Type Ⅲ scheelite exhibits lower(^(87)Sr/^(86)Sr)_(82 Ma)(0.7083-0.7087)and lowerε_(Nd)(82 Ma)(from−10.5 to−6.9)values than the two-mica granite.This indicates that the two-mica granite alone did not provide the ore-forming fluids and metals and that the Type Ⅲ scheelite ore-forming fluids likely involved external fluids that were probably derived from carbonate rocks.The implication is that highly differentiated two-mica granites were the source of primary W-bearing metals and fluids,which is consistent with earlier research on the origin of Sn ore-forming materials.展开更多
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie...The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers.展开更多
Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-...Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.展开更多
文摘Using linear water wave theory,three-dimensional problems concerning the interaction of waves with spherical structures in a fluid which contains a three-layer fluid consisting of a layer of finite depth bounded above by freshwater of finite depth with free surface and below by an infinite layer of water of greater density are considered.In such a situation timeharmonic waves with a given frequency can propagate with three wavenumbers.The sphere is submerged in either of the three layers.Each problem is reduced to an infinite system of linear equations by employing the method of multipoles and the system of equations is solved numerically by standard technique.The hydrodynamic forces(vertical and horizontal forces)are obtained and depicted graphically against the wavenumber.When the density ratio of the upper and middle layer is made to approximately one,curves for vertical and horizontal forces almost coincide with the corresponding curves for the case of a two-layer fluid with a free surface.This means that in the limit,the density ratio of the upper and middle layer goes to approximately one,the solution agrees with the solution for the case of a two-layer fluid with a free surface.
文摘In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 72174121)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Soft Science Research Project of Shanghai (Grant No. 22692112600)。
文摘Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.
基金funding support from the National Natural Science Foundation of China (Nos. 42477208 and 52079134)the Natural Science Foundation of Hubei Province, China (No. 2024AFA072)+2 种基金the Youth Innovation Promotion Association CAS (No. 2022332)the National Key R&D Program of China (No. 2024YFF0508203)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering Safety (Nos. SKLGME-JBGS2402 and SKLGME022022)。
文摘Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress tensor by measuring strain using an HI strain cell.However,existing analytical solutions for stress calculation based on an HI strain cell in a double-layer medium are not applicable when an HI strain cell is used in a three-layer medium,leading to erroneous stress calculations.To address this issue,this paper presents a method for calculating stress tensors in a three-layer medium using numerical simulations,specifically by obtaining a constitutive matrix that relates strain measurements to stress tensors in a three-layer medium.Furthermore,using Latin hypercube sampling (LHS) and orthogonal experimental design strategies,764 groups of numerical models encompassing various stress measurement scenarios have been established and calculated using FLAC^(3D)software.Finally,a surrogate model based on artificial neural network (ANN) was developed to predict constitutive matrices,achieving a goodness of fit (R^(2)) of 0.999 and a mean squared error (MSE) of 1.254.A software program has been developed from this surrogate model for ease of use in practical engineering applications.The method’s accuracy was verified through numerical simulations,analytical solution and laboratory experiment,demonstrating its effectiveness in calculating stress in a three-layer medium.The surrogate model was applied to calculate mining-induced stress in the roadway roof rock of a coal mine,a typical case for stress measurement in a three-layer medium.Errors in stress calculations arising from the use of existing analytical solutions were corrected.The study also highlights the significant errors associated with using double-layer analytical solutions in a three-layer medium,which could lead to inappropriate engineering design.
文摘The conjugate flows over a step with the height h_0, which might be positive or negative, was studied in a three-layer fluid and the coupled nonlinear equations were derived, with which the effects of varying height h_0 on the existence and evolution of conjugate flows were examined. It is concluded that the conjugate flow is sharply sensitive to the thickness of fluid layers and its characteristics alters remarkably due to the existence of the step. As the flow climbs up a step (h_0>0), the conjugate flow with a convex lower interface and a concave upper interface is allowed to appear, while the flow with the concave lower interface or the simultaneous concave interfaces will be depressed. As the flow goes down a step (i.e., h_0<0), on most occasions only one kind of conjugate flow could exist, which prossesses the form with the simultaneous convex interfaces and will disappear rapidly with the increase of the step depth.
文摘Using linear water-wave theory,wave scattering by a horizontal circular cylinder submerged in a three-layer ocean consisting of a layer of finite depth bounded above by finite depth water with free surface and below by an infinite layer of fluid of greater density is considered.The cylinder is submerged in either of the three layers.In such a situation time-harmonic waves with given frequency can propagate with three different wave numbers.Employing the method of multipoles the problem is reduced to an infinite system of linear equations which are solved numerically by standard technique after truncation.The transmission and reflection coefficients are obtained and depicted graphically against the wave number for all cases.In a two-layer fluid there are energy identities that exist connecting the transmission and reflection coefficients that arise.These energy identities are systematically extended to the three-fluid cases which are obtained.
基金supported by the Natural Science Foundation of Inner Mongolia,China(Grant No 200711020116)Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No KLOCAW0805)+1 种基金the Key Program of the Scientific Research Plan of Inner Mongolia University of Technology,China(Grant No ZD200608)National Science Fund for Distinguished Young Scholars of China(Grant No 40425015)
文摘Interracial internal waves in a three-layer density-stratified fluid are investigated using a singular perturbation method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interracial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.
基金supported by the National Natural Science Foundation of China(22308170).
文摘Temperature is a critical factor influencing the performance of coal catalytic hydrogasification in bubbling fluidized bed gasifiers.Numerical simulations at various temperatures(1023 K,1073 K,1123 K,and 1173 K)are conducted to elucidate the mechanisms by which temperature affects bubble size,global reaction performance,and particle-scale reactivity.The simulation results indicate that bubble size increases at elevated temperatures,while H_(2)-char hydrogasification reactivity is enhanced.Particle trajectory analyses reveal that particles sized between 100 and 250μm undergo intense char hydrogasification in the dense phase,contributing to the formation of hot spots.To assess the impact of temperature on the particle-scale flow-transfer-reaction process,the dimensionless quantities of Reynolds,Nusselt,and Sherwood numbers,along with the solids dispersion coefficient,are calculated.It is found that higher temperatures inhibit bubble-induced mass and heat transfer.In general,3 MPa,1123 K,and 3-4 fluidization numbers are identified as the optimal conditions for particles ranging from 0 to350μm.These findings provide valuable insights into the inherent interactions between temperature and gas-particle reaction.
文摘Based on the generalized Boussinesq equations for the three-layer fluid system, the KdV equations for the interfaces are obtained by using a perturbation method and the effect of fluid depth on the generation of solitary waves is discussed. By classifying the waves into fast-, medium- and slow-modes, it is found that the results on the slow-mode waves is qualitatively consistent with the experimental ones, and there may exist concave solitary waves on free surface, which is yet to be verified by experiments.
基金Huxiang TCM Physique Intervention Clinical Research Center,No.2023SK4061Traditional Chinese Medicine Research Project of Hunan Province,No.B2023065+4 种基金Hunan Province"14th Five-Year Plan"key specialty of TCM,No.[2023]4Hunan University of Chinese Medicine and Hospital Joint Foundation,No.2023XYLH019 and 2024XYLH365R&D Plan for Key Areas of Hunan Provincial Department of Science and Technology,No.2019SK2321Excellent Youth Program of Hunan Education Department,No.24B0346Hunan Provincial Natural Science Foundation for Young Scientists,No.2025JJ60626.
文摘BACKGROUND Anxiety and depression are prevalent among patients with chronic heart failure(CHF)and can adversely contribute to treatment adherence and clinical outcomes.Poor fluid restriction adherence is a widespread challenge in the management of CHF.To effectively manage disease progression and alleviate symptoms,it is crucial to identify key influencing factors to facilitate the implementation of targeted interventions.AIM To investigate the status of anxiety and depression among patients with CHF and determine the factors contributing to poor fluid restriction adherence.METHODS Three hundred CHF patients seeking medical treatment at The First Hospital of Hunan University of Traditional Chinese Medicine between June 2021 and June 2023 were included in the study.Questionnaires,including the Psychosomatic Symptom Scale,Self-Rating Anxiety Scale,Self-Rating Depression Scale,and Fluid Restriction Adherence Questionnaire were administered to patients.Based on their anxiety and depression scores,patients were categorized into anxiety/depression and non-anxiety/depression groups,as well as fluid restriction adherence and fluid restriction non-adherence groups.General patient data were collected,and univariate and logistic regression analyses were conducted to determine the occurrence of depression and anxiety.Logistic regression analysis was used to identify independent factors influencing fluid restriction adherence.RESULTS Statistically significant differences in age,New York Heart Association(NYHA)grading,marital status,educational attainment,and family support were observed between depressed and non-depressed CHF patients(P<0.05).Age,NYHA grading,marital status,educational attainment,and family support were identified as factors influencing the development of depression.The anxiety and non-anxiety groups differed statistically in terms of gender,age,NYHA grading,smoking history,alcohol consumption history,monthly income,educational attainment,and family support(P<0.05).Gender,smoking,alcohol consumption,monthly income,and educational attainment affected anxiety in these patients.The fluid restriction adherence rate was 28.0%,and thirst sensation,anxiety,and depression were identified as independent influencing factors.CONCLUSION CHF patients are susceptible to anxiety and depression,with multiple associated influencing factors.Moreover,anxiety and depression are independent factors that can influence fluid restriction adherence in these patients.
基金supported by National Natural Science Foundation of China (No.U23A20597)National Major Science and Technology Project of China (No.2024ZD1003803)+1 种基金Chongqing Science Fund for Distinguished Young Scholars of Chongqing Municipality (No.CSTB2022NSCQ-JQX0028)Natural Science Foundation of Chongqing (No.CSTB2024NSCQ-MSX0503)。
文摘In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.
文摘Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.
文摘The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and fluid mobility due to the influences of the northeast and northwest dual provenance systems.This study performed multiple experimental analyses on nine samples from the area to determine the petrological and petrophysical properties,as well as the PTS characteristics of reservoirs in different provenance-controlled regions.On this basis,the pore-throat size distribution(PSD)obtained from high-pressure mercury injection(HPMI)was utilized to convert the NMR movable fluid T2spectrum,allowing for quantitative characterization of the full PSD and the occurrence characteristics of movable fluids.A systematic analysis was conducted on the primary controlling factors affecting fluid mobility in the reservoir.The results indicated that the lithology in the eastern and western regions is lithic arkose.The eastern sandstones,being farther from the provenance,exhibit higher contents of feldspar and lithic fragments,along with the development of more dissolution pores.The reservoir possesses good petrophysical properties,low displacement pressure,and high pore-throat connectivity and homogeneity,indicating strong fluid mobility.In contrast,the western sandstones,being nearer to the provenance,exhibit poor grain sorting,high contents of lithic fragments,strong compaction and cementation effects,resulting in poor petrophysical properties,and strong pore-throat heterogeneity,revealing weak fluid mobility.The range of full PSD in the eastern reservoir is wider than that in the western reservoir,with relatively well-developed macropores.The macropores are the primary space for occurrence of movable fluids,and controls the fluid mobility of the reservoir.The effective porosity of movable fluids(EPMF)quantitatively represents the pore space occupied by movable fluids within the reservoir and correlates well with porosity,permeability,and PTS parameters,making it a valuable parameter for evaluating fluid mobility.Under the multi-provenance system,the eastern and western reservoirs underwent different sedimentation and diagenesis processes,resulting in differential distribution of reservoir mineral components and pore types,which in turn affects the PTS heterogeneity and reservoir quality.The composition and content of reservoir minerals are intrinsic factors influencing fluid mobility,while the microscopic PTS is the primary factor controlling it.Low clay mineral content,welldeveloped macropores,and weak pore-throat heterogeneity all contribute to the storage and seepage of reservoir fluids.
基金the Australian Research Council Discovery Project(ARC DP 220100851)scheme and would acknowledge that.
文摘Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
基金supported in part by the National Natural Science Foundations of China(Nos.61175084,61673042 and 62203046)the China Postdoctoral Science Foundation(No.2022M713006).
文摘Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs.
基金financed by Yunnan Major Scientific and Technological Projects(Grant No.202202AG050006)the National Natural Science Foundation of China(Grant No.42462011)Projects of Yunnan Province Technology Hall(Grant No.202305AT350004).
文摘The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified in the region via exploration.However,metallogenic sources and evolution of W remain unclear,and the existing metallogenic model has to be updated to guide further ore prospecting.Elemental and Sr-Nd isotopic data for scheelites assist in the determination of sources and evolution of the W-mineralizing fluids and metals in the district.Based on field geological survey,the scheelites in the Gejiu district can be categorized into three types:altered granite(Type Ⅰ),quartz vein(Type Ⅱ)from the Laochang deposit,and skarn(Type Ⅲ)from the Kafang deposit.Types Ⅰ and Ⅱ scheelites have low molybdenum(Mo)and strontium(Sr)contents,and Type Ⅱ scheelite has lower Sr contents than Type Ⅰ as well as higher Mo and Sr contents than Type Ⅲ scheelites.Varying Mo contents across the scheelite types suggests that the oxygen fugacity varied during ore accumulation.Type Ⅰ and Type Ⅱ scheelites exhibit similar rare earth elements(REE)patterns;Type Ⅲ scheelite contains lower REE content,particularly HREE,compared with the other scheelites.All scheelites exhibit negative Eu anomalies in the chondrite-normalized REE patterns.As the W-mineralization and two-mica granite share close spatial and temporal relationships,the negative Eu anomalies were likely inherited from the two-mica granite.Type Ⅰ and Type Ⅱ scheelites display varied(^(87)Sr/^(86)Sr)_(82 Ma)(0.7090-0.7141)andε_(Nd)(82 Ma)(from−9.9 to−5.4)values,similar to those of granite.However,Type Ⅲ scheelite exhibits lower(^(87)Sr/^(86)Sr)_(82 Ma)(0.7083-0.7087)and lowerε_(Nd)(82 Ma)(from−10.5 to−6.9)values than the two-mica granite.This indicates that the two-mica granite alone did not provide the ore-forming fluids and metals and that the Type Ⅲ scheelite ore-forming fluids likely involved external fluids that were probably derived from carbonate rocks.The implication is that highly differentiated two-mica granites were the source of primary W-bearing metals and fluids,which is consistent with earlier research on the origin of Sn ore-forming materials.
文摘The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers.
基金supports for this project from State Key Laboratory of Chemical Safety(SKLCS–2024001)are gratefully acknowledged。
文摘Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.