With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge...With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.展开更多
As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social syste...As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.展开更多
Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configurati...Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configuration designs,ensuring precision,and facilitating scalability for mass production.Photolithography stands out as an ideal technology,leveraging its unparalleled resolution,exceptional design flexibility,and entrenched position within the mature semiconductor industry.However,comprehensive reviews on its application in MB development remain scarce.This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs.Firstly,we delve into the fundamental principles and step-by-step procedures of photolithography,offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection.Subsequently,we highlighted the specific roles of photolithography in the fabrication of MBs,including its utilization as a template for creating miniaturized micropatterns,a protective layer during the etching process,a mold for soft lithography,a constituent of MB active component,and a sacrificial layer in the construction of micro-Swiss-roll structure.Finally,the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography,providing comprehensive insights and sparking research inspiration in this field.展开更多
The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and ...The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.展开更多
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic developm...The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic development.This study provides valuable insights into optimizing wireless communication,paving the way for a more connected and productive future in the mining industry.The IoT revolution is advancing across industries,but harsh geometric environments,including open-pit mines,pose unique challenges for reliable communication.The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency(RF)protocols such as Bluetooth,Wi-Fi,GSM/GPRS,Narrow Band(NB)-IoT,SigFox,ZigBee,and Long Range Wireless Area Network(LoRaWAN).This study addresses the optimization of network implementations by comparing two leading free-spreading IoT-based RF protocols such as ZigBee and LoRaWAN.Intensive field tests are conducted in various opencast mines to investigate coverage potential and signal attenuation.ZigBee is tested in the Tadicherla open-cast coal mine in India.Similarly,LoRaWAN field tests are conducted at one of the associated cement companies(ACC)in the limestone mine in Bargarh,India,covering both Indoor-toOutdoor(I2O)and Outdoor-to-Outdoor(O2O)environments.A robust framework of path-loss models,referred to as Free space,Egli,Okumura-Hata,Cost231-Hata and Ericsson models,combined with key performance metrics,is employed to evaluate the patterns of signal attenuation.Extensive field testing and careful data analysis revealed that the Egli model is the most consistent path-loss model for the ZigBee protocol in an I2O environment,with a coefficient of determination(R^(2))of 0.907,balanced error metrics such as Normalized Root Mean Square Error(NRMSE)of 0.030,Mean Square Error(MSE)of 4.950,Mean Absolute Percentage Error(MAPE)of 0.249 and Scatter Index(SI)of 2.723.In the O2O scenario,the Ericsson model showed superior performance,with the highest R^(2)value of 0.959,supported by strong correlation metrics:NRMSE of 0.026,MSE of 8.685,MAPE of 0.685,Mean Absolute Deviation(MAD)of 20.839 and SI of 2.194.For the LoRaWAN protocol,the Cost-231 model achieved the highest R^(2)value of 0.921 in the I2O scenario,complemented by the lowest metrics:NRMSE of 0.018,MSE of 1.324,MAPE of 0.217,MAD of 9.218 and SI of 1.238.In the O2O environment,the Okumura-Hata model achieved the highest R^(2)value of 0.978,indicating a strong fit with metrics NRMSE of 0.047,MSE of 27.807,MAPE of 27.494,MAD of 37.287 and SI of 3.927.This advancement in reliable communication networks promises to transform the opencast landscape into networked signal attenuation.These results support decision-making for mining needs and ensure reliable communications even in the face of formidable obstacles.展开更多
High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse do...High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse domains,ranging from internet of things(IoT)to embodied artificial intelligence systems.Achieving high precision necessitates various circuit techniques including high-performance amplifiers and advanced calibration schemes.Furthermore,the evolution of ADC architectures has gradually elevated the significance of peripheral circuitry co-design in optimizing system-level performance metrics.In ISSCC 2025,several techniques are proposed to address these challenges.展开更多
I love dogs because they are so friendly and lovely.With bright eyes,dogs can see things in the dark.Their noses are very sensitive,and this helps them find things easily.My pet dog is named Dahu.He is white with long...I love dogs because they are so friendly and lovely.With bright eyes,dogs can see things in the dark.Their noses are very sensitive,and this helps them find things easily.My pet dog is named Dahu.He is white with long ears.Every day when I come back home from school,he runs to me happily and wags his tail.We often play games together.He likes to chase a ball,and I throw the ball far,then he runs quickly to bring it back.展开更多
In the domain of Electronic Medical Records(EMRs),emerging technologies are crucial to addressing longstanding concerns surrounding transaction security and patient privacy.This paper explores the integration of smart...In the domain of Electronic Medical Records(EMRs),emerging technologies are crucial to addressing longstanding concerns surrounding transaction security and patient privacy.This paper explores the integration of smart contracts and blockchain technology as a robust framework for securing sensitive healthcare data.By leveraging the decentralized and immutable nature of blockchain,the proposed approach ensures transparency,integrity,and traceability of EMR transactions,effectivelymitigating risks of unauthorized access and data tampering.Smart contracts further enhance this framework by enabling the automation and enforcement of secure transactions,eliminating reliance on intermediaries and reducing the potential for human error.This integration marks a paradigm shift in management and exchange of healthcare information,fostering a secure and privacy-preserving ecosystem for all stakeholders.The research also evaluates the practical implementation of blockchain and smart contracts within healthcare systems,examining their real-world effectiveness in enhancing transactional security,safeguarding patient privacy,and maintaining data integrity.Findings from the study contribute valuable insights to the growing body of work on digital healthcare innovation,underscoring the potential of these technologies to transform EMR systems with high accuracy and precision.As global healthcare systems continue to face the challenge of protecting sensitive patient data,the proposed framework offers a forward-looking,scalable,and effective solution aligned with the evolving digital healthcare landscape.展开更多
Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has bee...Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens.展开更多
The digital revolution era has impacted various domains,including healthcare,where digital technology enables access to and control of medical information,remote patient monitoring,and enhanced clinical support based ...The digital revolution era has impacted various domains,including healthcare,where digital technology enables access to and control of medical information,remote patient monitoring,and enhanced clinical support based on the Internet of Health Things(IoHTs).However,data privacy and security,data management,and scalability present challenges to widespread adoption.This paper presents a comprehensive literature review that examines the authentication mechanisms utilized within IoHT,highlighting their critical roles in ensuring secure data exchange and patient privacy.This includes various authentication technologies and strategies,such as biometric and multifactor authentication,as well as the influence of emerging technologies like blockchain,fog computing,and Artificial Intelligence(AI).The findings indicate that emerging technologies offer hope for the future of IoHT security,promising to address key challenges such as scalability,integrity,privacy and other security requirements.With this systematic review,healthcare providers,decision makers,scientists and researchers are empowered to confidently evaluate the applicability of IoT in healthcare,shaping the future of this field.展开更多
As the Internet of Medical Things (IoMT) continues to expand, smart health-monitoring devices generate vast amounts of valuable data while simultaneously raising critical security and privacy challenges. Blockchain te...As the Internet of Medical Things (IoMT) continues to expand, smart health-monitoring devices generate vast amounts of valuable data while simultaneously raising critical security and privacy challenges. Blockchain technology presents a promising avenue to address these concerns due to its inherent decentralization and security features. However, scalability remains a persistent hurdle, particularly for IoMT applications that involve large-scale networks and resource-constrained devices. This paper introduces a novel lightweight sharding method tailored to the unique demands of IoMT data sharing. Our approach enhances state bootstrapping efficiency and reduces operational overhead by utilizing a dual-chain structure comprising a main chain and a snapshot chain. The snapshot chain periodically records key blockchain states, allowing nodes to synchronize more efficiently. This mechanism is critical in reducing the time and resources needed for new nodes to join the network or existing nodes to recover from outages. Additionally, a block state pruning technique is implemented, significantly minimizing storage requirements and lowering transaction execution overhead during initialization and reconfiguration processes. This is crucial given the substantial data volumes inherent in IoMT ecosystems. By adopting an optimistic sharding strategy, our model allows nodes to swiftly join the snapshot shard, while full shards retain the complete ledger history to ensure comprehensive transaction verification. Extensive evaluations across diverse shard configurations demonstrate that this method significantly outperforms existing baseline models. It provides a comprehensive solution for IoMT blockchain applications, striking an optimal balance between security, scalability, and operational efficiency.展开更多
4 When you buy something,do you buy new or usecP Both can be good.When you buy things new,they're in perfect condition.These things usually last longer because they're new.New things also often have the newest...4 When you buy something,do you buy new or usecP Both can be good.When you buy things new,they're in perfect condition.These things usually last longer because they're new.New things also often have the newest features and design.展开更多
Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machin...Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machine learning applications in the Internet of Things(IoT).However,implementing FL across large-scale distributed fog networks presents significant challenges in maintaining privacy,preventing collusion attacks,and ensuring robust data aggregation.To address these challenges,we propose an Efficient Privacy-preserving and Robust Federated Learning(EPRFL)scheme for fog computing scenarios.Specifically,we first propose an efficient secure aggregation strategy based on the improved threshold homomorphic encryption algorithm,which is not only resistant to model inference and collusion attacks,but also robust to fog node dropping.Then,we design a dynamic gradient filtering method based on cosine similarity to further reduce the communication overhead.To minimize training delays,we develop a dynamic task scheduling strategy based on comprehensive score.Theoretical analysis demonstrates that EPRFL offers robust security and low latency.Extensive experimental results indicate that EPRFL outperforms similar strategies in terms of privacy preserving,model performance,and resource efficiency.展开更多
Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.The...Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.展开更多
The rapid advancements in distributed generation technologies,the widespread adoption of distributed energy resources,and the integration of 5G technology have spurred sharing economy businesses within the electricity...The rapid advancements in distributed generation technologies,the widespread adoption of distributed energy resources,and the integration of 5G technology have spurred sharing economy businesses within the electricity sector.Revolutionary technologies such as blockchain,5G connectivity,and Internet of Things(IoT)devices have facilitated peer-to-peer distribution and real-time response to fluctuations in supply and demand.Nevertheless,sharing electricity within a smart community presents numerous challenges,including intricate design considerations,equitable allocation,and accurate forecasting due to the lack of well-organized temporal parameters.To address these challenges,this proposed system is focused on sharing extra electricity within the smart community.The working of the proposed system is composed of five main phases.In phase 1,we develop a model to forecast the energy consumption of the appliances using the Long Short-Term Memory(LSTM)integrated with the attention module.In phase 2,based on the predicted energy consumption,we designed a smart scheduler with attention-induced Genetic Algorithm(GA)to schedule the appliances to reduce energy consumption.In phase 3,a dynamic Feed-in Tariff(dFIT)algorithm makes real-time tariff adjustments using LSTM for demand prediction and SHapley Additive exPlanations(SHAP)values to improve model transparency.In phase 4,the energy saved from solar systems and smart scheduling is shared with the community grid.Finally,in phase 5,SDP security ensures the integrity and confidentiality of shared energy data.To evaluate the performance of energy sharing and scheduling for houses with and without solar support,we simulated the above phases using data obtained from the energy consumption of 17 household appliances in our IoT laboratory.Finally,the simulation results show that the proposed scheme reduces energy consumption and ensures secure and efficient distribution with peers,promoting a more sustainable energy management and resilient smart community.展开更多
基金supported by the Shandong Province Science and Technology Project(2023TSGC0509,2022TSGC2234)Qingdao Science and Technology Plan Project(23-1-5-yqpy-2-qy)Open Topic Grants of Anhui Province Key Laboratory of Intelligent Building&Building Energy Saving,Anhui Jianzhu University(IBES2024KF08).
文摘With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.
基金supported by the National Key Research and Development Program of China(2021YFB1714300)the National Natural Science Foundation of China(62233005,U2441245,62173141)+3 种基金CNPC Innovation Found(2024DQ02-0507)Shanghai Natural Science(24ZR1416400)Shanghai Baiyu Lan Talent Program Pujiang Project(24PJD020)the Programme of Introducing Talents of Discipline to Universities(the 111 Project)(B17017)
文摘As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.
基金supported by the National Natural Science Foundation of China(22125903,22439003,22209175)the National Key R&D Program of China(Grant 2022YFA1504100,2023YFB4005204)+1 种基金the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(Grant E412010508)the State Key Laboratory of Catalysis(No:2024SKL-A-001)。
文摘Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configuration designs,ensuring precision,and facilitating scalability for mass production.Photolithography stands out as an ideal technology,leveraging its unparalleled resolution,exceptional design flexibility,and entrenched position within the mature semiconductor industry.However,comprehensive reviews on its application in MB development remain scarce.This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs.Firstly,we delve into the fundamental principles and step-by-step procedures of photolithography,offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection.Subsequently,we highlighted the specific roles of photolithography in the fabrication of MBs,including its utilization as a template for creating miniaturized micropatterns,a protective layer during the etching process,a mold for soft lithography,a constituent of MB active component,and a sacrificial layer in the construction of micro-Swiss-roll structure.Finally,the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography,providing comprehensive insights and sparking research inspiration in this field.
文摘The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
文摘The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic development.This study provides valuable insights into optimizing wireless communication,paving the way for a more connected and productive future in the mining industry.The IoT revolution is advancing across industries,but harsh geometric environments,including open-pit mines,pose unique challenges for reliable communication.The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency(RF)protocols such as Bluetooth,Wi-Fi,GSM/GPRS,Narrow Band(NB)-IoT,SigFox,ZigBee,and Long Range Wireless Area Network(LoRaWAN).This study addresses the optimization of network implementations by comparing two leading free-spreading IoT-based RF protocols such as ZigBee and LoRaWAN.Intensive field tests are conducted in various opencast mines to investigate coverage potential and signal attenuation.ZigBee is tested in the Tadicherla open-cast coal mine in India.Similarly,LoRaWAN field tests are conducted at one of the associated cement companies(ACC)in the limestone mine in Bargarh,India,covering both Indoor-toOutdoor(I2O)and Outdoor-to-Outdoor(O2O)environments.A robust framework of path-loss models,referred to as Free space,Egli,Okumura-Hata,Cost231-Hata and Ericsson models,combined with key performance metrics,is employed to evaluate the patterns of signal attenuation.Extensive field testing and careful data analysis revealed that the Egli model is the most consistent path-loss model for the ZigBee protocol in an I2O environment,with a coefficient of determination(R^(2))of 0.907,balanced error metrics such as Normalized Root Mean Square Error(NRMSE)of 0.030,Mean Square Error(MSE)of 4.950,Mean Absolute Percentage Error(MAPE)of 0.249 and Scatter Index(SI)of 2.723.In the O2O scenario,the Ericsson model showed superior performance,with the highest R^(2)value of 0.959,supported by strong correlation metrics:NRMSE of 0.026,MSE of 8.685,MAPE of 0.685,Mean Absolute Deviation(MAD)of 20.839 and SI of 2.194.For the LoRaWAN protocol,the Cost-231 model achieved the highest R^(2)value of 0.921 in the I2O scenario,complemented by the lowest metrics:NRMSE of 0.018,MSE of 1.324,MAPE of 0.217,MAD of 9.218 and SI of 1.238.In the O2O environment,the Okumura-Hata model achieved the highest R^(2)value of 0.978,indicating a strong fit with metrics NRMSE of 0.047,MSE of 27.807,MAPE of 27.494,MAD of 37.287 and SI of 3.927.This advancement in reliable communication networks promises to transform the opencast landscape into networked signal attenuation.These results support decision-making for mining needs and ensure reliable communications even in the face of formidable obstacles.
文摘High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse domains,ranging from internet of things(IoT)to embodied artificial intelligence systems.Achieving high precision necessitates various circuit techniques including high-performance amplifiers and advanced calibration schemes.Furthermore,the evolution of ADC architectures has gradually elevated the significance of peripheral circuitry co-design in optimizing system-level performance metrics.In ISSCC 2025,several techniques are proposed to address these challenges.
文摘I love dogs because they are so friendly and lovely.With bright eyes,dogs can see things in the dark.Their noses are very sensitive,and this helps them find things easily.My pet dog is named Dahu.He is white with long ears.Every day when I come back home from school,he runs to me happily and wags his tail.We often play games together.He likes to chase a ball,and I throw the ball far,then he runs quickly to bring it back.
文摘In the domain of Electronic Medical Records(EMRs),emerging technologies are crucial to addressing longstanding concerns surrounding transaction security and patient privacy.This paper explores the integration of smart contracts and blockchain technology as a robust framework for securing sensitive healthcare data.By leveraging the decentralized and immutable nature of blockchain,the proposed approach ensures transparency,integrity,and traceability of EMR transactions,effectivelymitigating risks of unauthorized access and data tampering.Smart contracts further enhance this framework by enabling the automation and enforcement of secure transactions,eliminating reliance on intermediaries and reducing the potential for human error.This integration marks a paradigm shift in management and exchange of healthcare information,fostering a secure and privacy-preserving ecosystem for all stakeholders.The research also evaluates the practical implementation of blockchain and smart contracts within healthcare systems,examining their real-world effectiveness in enhancing transactional security,safeguarding patient privacy,and maintaining data integrity.Findings from the study contribute valuable insights to the growing body of work on digital healthcare innovation,underscoring the potential of these technologies to transform EMR systems with high accuracy and precision.As global healthcare systems continue to face the challenge of protecting sensitive patient data,the proposed framework offers a forward-looking,scalable,and effective solution aligned with the evolving digital healthcare landscape.
基金supported in part by National Key R&D Program of China(Grant No.2021YFB1714100)in part by the National Natural Science Foundation of China(NSFC)under Grant 62371239+5 种基金in part by the the Program of Science and Technology Cooperation of Nanjing with International/Hong Kong,Macao and Taiwan(Grant No.202401019)in part by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515012407)in part by the the Research Center for FinTech and Digital-Intelligent Management at Shenzhen University,in part by the National Natural Science Foundation of China under Grant 62271192in part by the Equipment Pre-Research Joint Research Program of Ministry of Education under Grant 8091B032129in part by the Major Science and Technology Projects of Longmen Laboratory under Grant 231100220300 and 231100220200in part by the Central Plains Leading Talent in Scientific and Technological Innovation Program under Grant 244200510048.
文摘Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens.
文摘The digital revolution era has impacted various domains,including healthcare,where digital technology enables access to and control of medical information,remote patient monitoring,and enhanced clinical support based on the Internet of Health Things(IoHTs).However,data privacy and security,data management,and scalability present challenges to widespread adoption.This paper presents a comprehensive literature review that examines the authentication mechanisms utilized within IoHT,highlighting their critical roles in ensuring secure data exchange and patient privacy.This includes various authentication technologies and strategies,such as biometric and multifactor authentication,as well as the influence of emerging technologies like blockchain,fog computing,and Artificial Intelligence(AI).The findings indicate that emerging technologies offer hope for the future of IoHT security,promising to address key challenges such as scalability,integrity,privacy and other security requirements.With this systematic review,healthcare providers,decision makers,scientists and researchers are empowered to confidently evaluate the applicability of IoT in healthcare,shaping the future of this field.
基金supported by the National Natural Science Foundation of China(62272207)the Key Project of Natural Science Foundation of Jiangxi Province(20224ACB202009)+1 种基金the Science and Technology Project of theDepartment of Education of Jiangxi Province(GJJ2200925)the Jiangxi Provincial Health Commission Science and Technology Plan(202311147).
文摘As the Internet of Medical Things (IoMT) continues to expand, smart health-monitoring devices generate vast amounts of valuable data while simultaneously raising critical security and privacy challenges. Blockchain technology presents a promising avenue to address these concerns due to its inherent decentralization and security features. However, scalability remains a persistent hurdle, particularly for IoMT applications that involve large-scale networks and resource-constrained devices. This paper introduces a novel lightweight sharding method tailored to the unique demands of IoMT data sharing. Our approach enhances state bootstrapping efficiency and reduces operational overhead by utilizing a dual-chain structure comprising a main chain and a snapshot chain. The snapshot chain periodically records key blockchain states, allowing nodes to synchronize more efficiently. This mechanism is critical in reducing the time and resources needed for new nodes to join the network or existing nodes to recover from outages. Additionally, a block state pruning technique is implemented, significantly minimizing storage requirements and lowering transaction execution overhead during initialization and reconfiguration processes. This is crucial given the substantial data volumes inherent in IoMT ecosystems. By adopting an optimistic sharding strategy, our model allows nodes to swiftly join the snapshot shard, while full shards retain the complete ledger history to ensure comprehensive transaction verification. Extensive evaluations across diverse shard configurations demonstrate that this method significantly outperforms existing baseline models. It provides a comprehensive solution for IoMT blockchain applications, striking an optimal balance between security, scalability, and operational efficiency.
文摘4 When you buy something,do you buy new or usecP Both can be good.When you buy things new,they're in perfect condition.These things usually last longer because they're new.New things also often have the newest features and design.
基金supported in part by the National Natural Science Foundation of China(62462053)the Science and Technology Foundation of Qinghai Province(2023-ZJ-731)+1 种基金the Open Project of the Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Area(2023-KF-12)the Open Research Fund of Guangdong Key Laboratory of Blockchain Security,Guangzhou University。
文摘Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machine learning applications in the Internet of Things(IoT).However,implementing FL across large-scale distributed fog networks presents significant challenges in maintaining privacy,preventing collusion attacks,and ensuring robust data aggregation.To address these challenges,we propose an Efficient Privacy-preserving and Robust Federated Learning(EPRFL)scheme for fog computing scenarios.Specifically,we first propose an efficient secure aggregation strategy based on the improved threshold homomorphic encryption algorithm,which is not only resistant to model inference and collusion attacks,but also robust to fog node dropping.Then,we design a dynamic gradient filtering method based on cosine similarity to further reduce the communication overhead.To minimize training delays,we develop a dynamic task scheduling strategy based on comprehensive score.Theoretical analysis demonstrates that EPRFL offers robust security and low latency.Extensive experimental results indicate that EPRFL outperforms similar strategies in terms of privacy preserving,model performance,and resource efficiency.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFB3603403,2021YFB3600502)the National Natural Science Foundation of China(Grant Nos.62075040,62301150)+3 种基金the Southeast University Interdisciplinary Research Program for Young Scholars(2024FGC1007)the Start-up Research Fund of Southeast University(RF1028623164)the Nanjing Science and Technology Innovation Project for Returned Overseas Talent(4206002302)the Fundamental Research Funds for the Central Universities(2242024K40015).
文摘Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.
基金Funded by Kuwait Foundation for the Advancement of Sciences(KFAS)under project code:PN23-15EM-1901.
文摘The rapid advancements in distributed generation technologies,the widespread adoption of distributed energy resources,and the integration of 5G technology have spurred sharing economy businesses within the electricity sector.Revolutionary technologies such as blockchain,5G connectivity,and Internet of Things(IoT)devices have facilitated peer-to-peer distribution and real-time response to fluctuations in supply and demand.Nevertheless,sharing electricity within a smart community presents numerous challenges,including intricate design considerations,equitable allocation,and accurate forecasting due to the lack of well-organized temporal parameters.To address these challenges,this proposed system is focused on sharing extra electricity within the smart community.The working of the proposed system is composed of five main phases.In phase 1,we develop a model to forecast the energy consumption of the appliances using the Long Short-Term Memory(LSTM)integrated with the attention module.In phase 2,based on the predicted energy consumption,we designed a smart scheduler with attention-induced Genetic Algorithm(GA)to schedule the appliances to reduce energy consumption.In phase 3,a dynamic Feed-in Tariff(dFIT)algorithm makes real-time tariff adjustments using LSTM for demand prediction and SHapley Additive exPlanations(SHAP)values to improve model transparency.In phase 4,the energy saved from solar systems and smart scheduling is shared with the community grid.Finally,in phase 5,SDP security ensures the integrity and confidentiality of shared energy data.To evaluate the performance of energy sharing and scheduling for houses with and without solar support,we simulated the above phases using data obtained from the energy consumption of 17 household appliances in our IoT laboratory.Finally,the simulation results show that the proposed scheme reduces energy consumption and ensures secure and efficient distribution with peers,promoting a more sustainable energy management and resilient smart community.