The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the bea...The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the beam channel for absorbing the divergence beam during the beam transmission process in the EAST-NBI system.The gas baffle entrance collimator(GBEC) is a typical high-heat-flux component located at the entrance of gas baffle. An efficient and accurate analysis of its thermodynamic performance is of great significance to explore the working limit and to ensure safe operation of the system under a high-parameter steady-state condition. Based on the thermo-fluid coupled method, thermodynamic analysis and simulation of GBEC is performed to get the working states and corresponding operating limits at different beam extraction conditions. This study provides a theoretical guidance for the next step to achieve long pulse with highpower experimental operation and has an important reference to ensure the safe operation of the system.展开更多
An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneous...An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneously to achieve the best coupling.Solutions of convection heat transfer problems with both Dirichlet and Neumann boundary conditions are presented.Two approaches for the implementation of Neumann boundary condition,i.e.direct and indirect methods,are introduced and compared in terms of accuracy and computational efficiency.Validation test cases include forced convection on a heated cylinder in an unbounded flow field and mixed convection around a circular body in a lid-driven cavity.Furthermore,the proposed method is applied to study the mixed convection around a heated rotating cylinder in a square enclosure with both iso-heat flux and iso-thermal boundary conditions.Computational results show that the order of accuracy of the indirect method is less than the direct method.However,the indirect method takes less computational time both in terms of the implementation of the boundary condition and the post processing time required to compute the heat transfer variables such as the Nusselt number.It is concluded that the iterative direct-forcing immersed boundary method is a powerful technique for the solution of convection heat transfer problems with stationary/moving boundaries and various boundary conditions.展开更多
The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat tr...The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.展开更多
基金supported by the National Natural Science Foundation of China(No.11605234)the Foundation of ASIPP(No.DSJJ-15-GC02)
文摘The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the beam channel for absorbing the divergence beam during the beam transmission process in the EAST-NBI system.The gas baffle entrance collimator(GBEC) is a typical high-heat-flux component located at the entrance of gas baffle. An efficient and accurate analysis of its thermodynamic performance is of great significance to explore the working limit and to ensure safe operation of the system under a high-parameter steady-state condition. Based on the thermo-fluid coupled method, thermodynamic analysis and simulation of GBEC is performed to get the working states and corresponding operating limits at different beam extraction conditions. This study provides a theoretical guidance for the next step to achieve long pulse with highpower experimental operation and has an important reference to ensure the safe operation of the system.
文摘An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneously to achieve the best coupling.Solutions of convection heat transfer problems with both Dirichlet and Neumann boundary conditions are presented.Two approaches for the implementation of Neumann boundary condition,i.e.direct and indirect methods,are introduced and compared in terms of accuracy and computational efficiency.Validation test cases include forced convection on a heated cylinder in an unbounded flow field and mixed convection around a circular body in a lid-driven cavity.Furthermore,the proposed method is applied to study the mixed convection around a heated rotating cylinder in a square enclosure with both iso-heat flux and iso-thermal boundary conditions.Computational results show that the order of accuracy of the indirect method is less than the direct method.However,the indirect method takes less computational time both in terms of the implementation of the boundary condition and the post processing time required to compute the heat transfer variables such as the Nusselt number.It is concluded that the iterative direct-forcing immersed boundary method is a powerful technique for the solution of convection heat transfer problems with stationary/moving boundaries and various boundary conditions.
基金Supported by the National High-Tech Research Project(GJSCB-HFGDY-2024-004)National Natural Science Foundation of China(12402305)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20232200)China Postdoctoral Science Foundation(2024M762703)Sichuan Science and Technology Program(2025ZNSFSC1352)。
文摘The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.