1|Introduction Theranostics is quickly establishing itself as a key component in the field of cancer diagnosis and treatment^([1]).It is now considered the fifth pillar of contemporary oncology manage-ment alongside s...1|Introduction Theranostics is quickly establishing itself as a key component in the field of cancer diagnosis and treatment^([1]).It is now considered the fifth pillar of contemporary oncology manage-ment alongside surgery,chemotherapy,radiotherapy,and immunotherapy^([2]).As theranostics continues to evolve,it is essential for clinicians and radiologists to be aware of the cur-rent landscape and trends in the field^([3-5]).This article aims to highlight the importance for global radiology training colleges to formally introduce theranostics into their training curricula.This is to ensure that their trainees will gain adequate exposure to this growing branch of precision medicine and to enable them to contribute effectively to the field of oncology.展开更多
Mesoporous silica nanoparticles(MsNs)are thought to be an attractive drug delivery material because of their advantages including high specific surface area,tunable pore size and morphology,easy sur-face modification ...Mesoporous silica nanoparticles(MsNs)are thought to be an attractive drug delivery material because of their advantages including high specific surface area,tunable pore size and morphology,easy sur-face modification and good biocompatibility.However,as a result of the poor biodegradability of MsNs,their biomedical applications are limited.To break the bottleneck of limited biomedical applications of MSNs,more and more researchers tend to design biodegradable MSNs(b-MSNs)nanosystems to obtain biodegradable as well as safe and reliable drug delivery carriers.In this review,we focused on sum-marizing strategies to improve the degradability of MsNs and innovatively proposed a series of advan-tages of b-MsNs,including controlled cargo release behavior,multifunctional frameworks,nano-catalysis,bio-imaging capabilities and enhanced therapeutic effects.Based on these advantages,we have inno-vatively summarized the applications of b-MsNs for enhanced tumor theranostics,including enhanced chemotherapy,delivery of nanosensitizers,gas molecules and biomacromolecules,initiation of immune response,synergistic therapies and image-guided tumor diagnostics.Finally,the challenges and further clinical translation potential of nanosystems based on b-MsNs are fully discussed and prospected.We believe that such b-MsNs delivery carriers will provide a timely reference for further applications in tu-mor theranostics.展开更多
Up to now,numerous emerging methods of cancer treatment including chemodynamic therapy,photothermal therapy,photodynamic therapy,sonodynamic therapy,immunotherapy and chemotherapy have rapidly entered a new stage of d...Up to now,numerous emerging methods of cancer treatment including chemodynamic therapy,photothermal therapy,photodynamic therapy,sonodynamic therapy,immunotherapy and chemotherapy have rapidly entered a new stage of development.However,the single treatment mode is often constrained by the complex tumor microenvironment.Recently,the nanomaterials and nanomedicine have emerged as promising avenues to overcome the limitation in cancer theranostics.Especially,metal-organic frameworks(MOFs)have gained considerable interests in cancer therapy because of their customizable morphologies,easy functionalization,large specific surface area,and good biocompatibility.Among these MOFs,iron-based MOFs(Fe-MOFs)are particularly promising for cancer treatment due to their properties as nano-photosensitizers,peroxidase-like activity,bioimaging contrast capabilities,and biodegradability.Utilizing their structural regularity and synthetic tunability,Fe-MOFs can be engineered to incorporate organic molecules or other inorganic nanoparticles,thereby creating multifunctional nanoplatforms for single or combined theranostic modes.Herein,the minireview focuses on the recent advancements of the Fe-MOFs-based nanoplatforms for self-enhanced imaging and treatment at tumor sites.Furthermore,the clinical research development of Fe-MOFs-based nanoplatforms is discussed,addressing key challenges and innovations for the future.Our review aims to provide novice researchers with a foundational understanding of advanced cancer theranostic modes and promote their clinical applications through the modification of Fe-MOFs.展开更多
Persistent luminescence is a unique optical phenomenon that continues to emit light for minutes or even hours after the excitation stops,which can significantly enhance the sensitivity and signal-to-noise ratio of ima...Persistent luminescence is a unique optical phenomenon that continues to emit light for minutes or even hours after the excitation stops,which can significantly enhance the sensitivity and signal-to-noise ratio of imaging[1].Among numerous persistent luminescence materials,lanthanide-doped fluoride nanoparticles have shown tunable persistent luminescence across the UV-vis-NIR spectrum(200-1700 nm)under X-ray excitation and adjustable size,promising significant applications in deep-tissue imaging[2,3],security encryption,and data storage[4].In particular,those exhibiting NIR-II luminescence(1000-1700 nm)provide key advantages such as deeper tissue penetration,higher contrast,and minimal interference from biological autofluorescence.However,challenges such as low brightness and rapid signal decay,especially in the NIR-II region,limit their effectiveness in long-term monitoring,including tumor theranostics[5].Traditional approaches like size control and surface passivation yield only marginal improvements,underscoring the need for next-generation nanoparticles with superior NIR-II brightness.展开更多
As the third essential trace element in the human body,copper plays a crucial role in various physiological processes,which lays the foundation for its broad applications in cancer treatments.The overview of copper,in...As the third essential trace element in the human body,copper plays a crucial role in various physiological processes,which lays the foundation for its broad applications in cancer treatments.The overview of copper,including pharmacokinetics,signaling pathways,and homeostasis dysregulation,is hereby discussed.Additionally,cuproptosis,as a newly proposed cell death mechanism associated with copper accumulation,is analyzed and further developed for efficient cancer treatment.Different forms of Cu-based nanoparticles and their advantages,aswell as limiting factors,are introduced.Moreover,the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities.In addition,Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential,which are widely explored in diverse cancer therapies and combined therapies.Reducing the concentration of Cu^(2+)/Cu^(+)is another cancer-killing method,and chelators can meet this need.More importantly,challenges and future prospects are identified for further research.展开更多
Triphenylamine(TPA)-based aggregation-induced emission luminogens(TPA-AIEgens),a type of photoactive material utilizing the typical TPA moiety,has recently attracted increasing attention for the diagnostics and treatm...Triphenylamine(TPA)-based aggregation-induced emission luminogens(TPA-AIEgens),a type of photoactive material utilizing the typical TPA moiety,has recently attracted increasing attention for the diagnostics and treatment of tumors due to their remarkable chemo-physical performance in optoelectronic research.TPA-AIEgens are distinguished from other photoactive agents by their strong fluorescence,good sensitivity,high signal-to-noise ratio,resistance to photobleaching,and lack of high concentration or aggregation-caused fluoresce quenching effects.In this review,we summarize the current advancements and the biomedical progress of TPA-AIEgens in tumor theranostics.First,the design principles of TPAAIEgens photoactive agents as well as the advanced targeting strategies for nuclei,cell membranes,cell organelle and tumors were introduced,respectively.Next,the applications of TPA-AIEgens in tumor diagnosis and therapeutic techniques were reviewed.Last,the challenges and prospects of TPA-AIEgens for cancer therapy were performed.The given landscape of the TPA-AIEgens hereby is meaningful for the further design and utilization of the novel photoactive material,which could be beneficial for the development of clinic applications.展开更多
Extracellular vesicles(EVs)are tiny vesicles released by various cells that contain a variety of proteins,lipids,and nucleic acids,which can have a wide range of effects on other cells.The dynamic composition and cont...Extracellular vesicles(EVs)are tiny vesicles released by various cells that contain a variety of proteins,lipids,and nucleic acids,which can have a wide range of effects on other cells.The dynamic composition and contents of EVs can serve as sensitive biomarkers for diagnosing and monitoring various cardiovascular diseases(CVDs).In addition to their diagnostic potential,EVs are therapeutic agents capable of precise modulation and amelioration of CVDs,because of their innate ability to encapsulate and deliver bioactive molecules.This growing field reveals the intricate interplay between EVs and cardiovascular pathophysiology,showing that EVs can act as messengers of intercellular communication for CVD regenerative therapy.Extracellular vesicles serve as dual agents in the field of theranostics,both as diagnostic biomarkers able to decode nuanced molecular signatures of CVDs and as potent vehicles for targeted therapeutic interventions.This review delves into the evolving landscape of EVs,uncovering their diagnostic and therapeutic prospects and emphasizing their growing importance in shaping the future of cardiovascular theranostics.展开更多
Mental disorders comprise a range of abnormal states that affect an individual's cognition,emotion,behavior,and social functioning,potentially distorting their perception of reality and seriously impacting their d...Mental disorders comprise a range of abnormal states that affect an individual's cognition,emotion,behavior,and social functioning,potentially distorting their perception of reality and seriously impacting their daily life,work,and interpersonal relationships.Mental disorders,including anxiety disorders,depression,schizo-phrenia,and bipolar disorder,impact not only individuals,but also their families and societies at large.The incidence of mental disorders increased by 31.6%between 1990 and 2007,and this trend continued between 2007 and 2017(percentage change:13.5%)[1].In China,the lifetime prevalence of mental disorders is 16.6%and has been reported to exhibit a trend toward increasing over time[2].In terms of the global disease burden,mental disorders were reported to account for 5.3%of total disability-adjusted life years in 2019,underscoring their significant impact on public health[3].展开更多
Theranostic carbon dots(CDs)have attracted widespread attention recently due to their tunable optical properties and diverse bioactivities.Beyond fluorescent imaging application,the photothermal property endows CDs wi...Theranostic carbon dots(CDs)have attracted widespread attention recently due to their tunable optical properties and diverse bioactivities.Beyond fluorescent imaging application,the photothermal property endows CDs with the potential for microbial inactivation.However,realization of the effective conversion between fluorescence and heat in one CD system has rarely been reported.Herein,we provide a simple strategy for targeted microbial theranostics based on 4-carboxyphenylboronic acid-derived CDs(PCBA-CDs)which possess concentration-dependent photoluminescence/photothermal features.At lower concentrations,PCBA-CDs show bright and stable fluorescent signals ranging from blue to green.The fluorescence intensity gradually decreases with increasing concentration,while on the contrary,the photothermal effect of PCBA-CDs ascends progressively due to the rearrangement of electronic transitions in aggregated CDs.PCBA-CDs also demonstrate high affinity to the polysaccharide structures on the surface of microbe which allows rapid microbial fluorescence imaging as well as specific photothermal ablation of pathogens in skin wounds using PCBA-CDs at lower and higher concentrations,respectively.This study supplies a facile nanotheranostic strategy for just-in-time microbial management using bioactive CDs.展开更多
Theranostics are one of the practical aspects of personalized medicine.This concept was designed to describe a material combining diagnosis,treatment and follow up of a disease.It evolved and included molecular target...Theranostics are one of the practical aspects of personalized medicine.This concept was designed to describe a material combining diagnosis,treatment and follow up of a disease.It evolved and included molecular targeting and nanotechnologies that incorporate both diagnosis and therapeutics.In this editorial,we are presenting briefly the concept and evolution of theranostics,highlighting many applications of theranostics in daily practice and discussing future perspectives and aspects of this model in gastrointestincal cancers.展开更多
Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics,but antimicrobial photodynamic therapy(aPDT)provides an excellent alternative.This tre...Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics,but antimicrobial photodynamic therapy(aPDT)provides an excellent alternative.This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species(ROS),which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern.When replacing light with low-frequency ultrasonic wave to activate sensitizer,a novel ultrasounddriven treatment emerges as antimicrobial sonodynamic therapy(aSDT).Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections,especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers,and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization.In this review,we systemically outline the mechanisms,targets,and current progress of aPDT/SDT for bacterial theranostic application.Furthermore,potential limitations and future perspectives are also highlighted.展开更多
In the last decade,the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases,especially cancer,is held great attention.Up to date,several approaches have been employed in order to d...In the last decade,the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases,especially cancer,is held great attention.Up to date,several approaches have been employed in order to develop smart nanotheranostics,which combine bioactive targeting on specific tissues as well as diagnostic properties.The nanotheranostics can deliver therapeutic agents by concomitantly monitor the therapy response in real-time.Consequently,the possibility of over-or under-dosing is decreased.Various non-invasive imaging techniques have been used to quantitatively monitor the drug delivery processes.Radiolabeling of nanomaterials is widely used as powerful diagnostic approach on nuclear medicine imaging.In fact,various radiolabeled nanomaterials have been designed and developed for imaging tumors and other lesions due to their efficient characteristics.Inorganic nanoparticles as gold,silver,silica based nanomaterials or organic nanoparticles as polymers,carbon based nanomaterials,liposomes have been reported asmultifunctional nanotheranostics.In this review,the imaging modalities according to their use in various diseases are summarized,providing special details for radiolabeling.In further,the most current nanotheranostics categorized via the used nanomaterials are also summed up.To conclude,this review can be beneficial for medical and pharmaceutical society as well as material scientists who work in the field of nanotheranostics since they can use this research as guide for producing newer and more efficient nanotheranostics.展开更多
Colorectal cancer(CRC)is the most common gastrointestinal tract cancer worldwide and is associated with high morbidity and mortality.The development of nanosized drug delivery systems has provided a new direction in C...Colorectal cancer(CRC)is the most common gastrointestinal tract cancer worldwide and is associated with high morbidity and mortality.The development of nanosized drug delivery systems has provided a new direction in CRC treatment.Among these systems,magnetic nanoparticle(MNP)-based multifunctional platforms provide a novel strategy for magnetic resonance imaging(MRI)-related cancer theranostics.At the beginning o f this original review,the carcinogenesis and treatment status o f CRC are summarized.Then,diversified preparation and functionalization methods of MNPs are systematically analyzed,followed by MRIinvolved theranostic strategies.The latest progress in MRI-mediated multimode diagnosis and image-guided targeted therapy in CRC management is the main focus.Finally,the major challenges in promoting MRI-induced precise theranostics of CRC in clinical practice are discussed.展开更多
Carbon dots(CDs), as a new member of carbon nanostructures, have been widely applied in extensive fields due to their exceptional physicochemical properties. While, the emissions of most reported CDs are located in th...Carbon dots(CDs), as a new member of carbon nanostructures, have been widely applied in extensive fields due to their exceptional physicochemical properties. While, the emissions of most reported CDs are located in the blue to green range under the excitation of ultraviolet or blue light, which severely limits their practical applications, especially in photovoltaic and biological fields. Studies that focused on synthesizing CDs with long-wavelength(red to near-infrared) emission/excitation features(simply named L-w CDs) and exploring their potential applications have been frequently reported in recent years. In this review, we analyzed the key influence factors for the synthesis of CDs with long wavelength and multicolor(containing long wavelength) emissive properties, discussed possible fluorescence mechanism,and summarized their applications in sensing and cancer theranostics. Finally, the existing challenges and potential opportunities of L-w CDs are presented.展开更多
Stanene(Sn)-based materials have been extensively applied in industrial production and daily life,but their potential biomedical application remains largely unexplored,which is due to the absence of the appropriate an...Stanene(Sn)-based materials have been extensively applied in industrial production and daily life,but their potential biomedical application remains largely unexplored,which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials.Herein,we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional(2D)Sn nanosheets(SnNSs).The obtained SnNSs exhibited a typical sheet-like structure with an average size of~100 nm and a thickness of~5.1 nm.After PEGylation,the resulting PEGylated SnNSs(SnNSs@PEG)exhibited good stability,superior biocompatibility,and excellent photothermal performance,which could serve as robust photothermal agents for multi-modal imaging(fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer.Furthermore,we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs,revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal.This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics.This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.展开更多
The insistent demand for space-controllable delivery,which reduces the side effects of non-steroidal antiinflammatory drugs(NSAIDs),has led to the development of a new theranostics-based approach for anti-inflammatory...The insistent demand for space-controllable delivery,which reduces the side effects of non-steroidal antiinflammatory drugs(NSAIDs),has led to the development of a new theranostics-based approach for anti-inflammatory therapy.The current anti-inflammatory treatments can be improved by designing a drug delivery system responsive to the inflammatory site biomarker,hydrogen polysulfide(H_(2)S_(n)).Here,we report a noveltheranostic agent 1(TA1),consisting of three parts:H_(2)S_(n)-mediated triggering part,a two-photon fluorophore bearing mitochondria targeting unit(Rhodol-TPP),and anti-inflammatory COX inhibitor(indomethacin).In vitro experiments showed that TA1 selectively reacts with H_(2)S_(n)to concomitantly release both Rhodol-TPP and indomethacin.Confocal-microscopy imaging of inflammation-inducedlive cells suggested that TA1 is localized in the mitochondria where the H_(2)S_(n)is overexpressed.The TA1 reacted with H_(2)S_(n)in the endogenous and exogenous H_(2)S_(n)environments and in lipopolysaccharide treated inflammatory cells.Moreover,TA1 suppressed COX-2 level in the inflammatory-induced cells and prostaglandin E 2(PGE2)level in blood serum from inflammation-induced mouse models.In vivo experiments with inflammation-induced mouse models suggested that TA1 exhibits inflammation-site-elective drug release followed by significant therapeutic e ects,showing its function as a theranostic agent,capable of both anti-inflammatory therapy and precise diagnosis.Theranostic behavior of TA1 is highly applicable in vivo model therapeutics for the inflammatory disease.展开更多
Quinoline-based fibroblast activation protein(FAP)inhibitor(FAPI)-based positron emission tomography(PET)imaging and radioligand therapy(RLT)are being investigated for use in a wide variety of diseases,and recent resu...Quinoline-based fibroblast activation protein(FAP)inhibitor(FAPI)-based positron emission tomography(PET)imaging and radioligand therapy(RLT)are being investigated for use in a wide variety of diseases,and recent results have been promising.This review summarizes the current status of FAPI radiopharmaceuticals in PET imaging of malignant tumors and benign conditions and compares their diagnostic efficacy with ^(18)F-fluorodeoxyglucose.In addition,we summarize the previously published FAP-targeted RLT data and discuss its current clinical use and future potential.Our qualitative summary can inform future research directions,medical guidelines,and optimal clinical decision-making.展开更多
Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics.Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment...Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics.Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound(US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents(UCAs)an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles(SPIOs), Cu S nanoparticles, DNA, si RNA, gold nanoparticles(GNPs), gold nanorods(GNRs), gold nanoshell(GNS), graphene oxides(GOs), polypyrrole(PPy) nanocapsules, Prussian blue(PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics.展开更多
Naphthalimide derivatives have good planarity and large conjugated structure and therefore possess photophysical properties and biological activities. Previously, our group discovered seven-membered heterocyclic deriv...Naphthalimide derivatives have good planarity and large conjugated structure and therefore possess photophysical properties and biological activities. Previously, our group discovered seven-membered heterocyclic derivatives via modifying 4-and 5-positions of naphthalimide skeleton and found the derivatives had good water solubility and showed large stokes shift and strong fluorescence in water. In this article, we designed and synthesized more seven-membered ring-fused naphthalimide derivatives(Y1-Y16)by introducing different substitutions on the imide group. Among them, Y1, Y5, Y9 were found to show similar cytotoxic activities with Amonafide against A549 and HL60 cells, with IC50values at 10^(-6)mol/L.What is more, the asymmetry derivatives(Y1 and Y5) showed high fluorescent quantum yields in the aqueous phase(Ф = 0.47). Considering the great fluorescence quantum yields in water and the potent anti-tumor activities of the representative seven-membered ring-fused naphthalimides, they have potentials to be used as agents for cancer theranostics.展开更多
Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity,from preventive and diagnostic to therapeutic fields.Lipoproteins,bec...Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity,from preventive and diagnostic to therapeutic fields.Lipoproteins,because of their inherent blood-brain barrier permeability and lesion-homing capability,have been identified as promising strategies for high-performance theranostics of brain diseases.However,the application of natural lipoproteins remains limited owing to insufficient accumulation and complex purification processes,which can be critical for individual therapeutics and clinical translation.To address these issues,lipoprotein-inspired nano drug-delivery systems(nano-DDSs),which have been learned from nature,have been fabricated to achieve synergistic drug delivery involving site-specific accumulation and tractable preparation with versatile physicochemical functions.In this review,the barriers in brain disease treatment,advantages of state-of-the-art lipoprotein-inspired nano-DDSs,and bio-interactions of such nano-DDSs are highlighted.Furthermore,the characteristics and advanced applications of natural lipoproteins and tailor-made lipoprotein-inspired nano-DDSs are summarized.Specifically,the key designs and current applications of lipoprotein-inspired nano-DDSs in the field of brain disease therapy are intensively discussed.Finally,the current challenges and future perspectives in the field of lipoprotein-inspired nano-DDSs combined with other vehicles,such as exosomes,cell membranes,and bacteria,are discussed.展开更多
文摘1|Introduction Theranostics is quickly establishing itself as a key component in the field of cancer diagnosis and treatment^([1]).It is now considered the fifth pillar of contemporary oncology manage-ment alongside surgery,chemotherapy,radiotherapy,and immunotherapy^([2]).As theranostics continues to evolve,it is essential for clinicians and radiologists to be aware of the cur-rent landscape and trends in the field^([3-5]).This article aims to highlight the importance for global radiology training colleges to formally introduce theranostics into their training curricula.This is to ensure that their trainees will gain adequate exposure to this growing branch of precision medicine and to enable them to contribute effectively to the field of oncology.
基金from"XingLiao Talent Program"of Liaoning Province(No.XLYC2203156)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(No.RC220397)are greatly acknowledged。
文摘Mesoporous silica nanoparticles(MsNs)are thought to be an attractive drug delivery material because of their advantages including high specific surface area,tunable pore size and morphology,easy sur-face modification and good biocompatibility.However,as a result of the poor biodegradability of MsNs,their biomedical applications are limited.To break the bottleneck of limited biomedical applications of MSNs,more and more researchers tend to design biodegradable MSNs(b-MSNs)nanosystems to obtain biodegradable as well as safe and reliable drug delivery carriers.In this review,we focused on sum-marizing strategies to improve the degradability of MsNs and innovatively proposed a series of advan-tages of b-MsNs,including controlled cargo release behavior,multifunctional frameworks,nano-catalysis,bio-imaging capabilities and enhanced therapeutic effects.Based on these advantages,we have inno-vatively summarized the applications of b-MsNs for enhanced tumor theranostics,including enhanced chemotherapy,delivery of nanosensitizers,gas molecules and biomacromolecules,initiation of immune response,synergistic therapies and image-guided tumor diagnostics.Finally,the challenges and further clinical translation potential of nanosystems based on b-MsNs are fully discussed and prospected.We believe that such b-MsNs delivery carriers will provide a timely reference for further applications in tu-mor theranostics.
基金National Key Research and Development Program of China(No.2022YFD2200602)111 Project(No.B20088)+1 种基金National Natural Science Foundation of China(Nos.52202345 and 31930076)the Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team)。
文摘Up to now,numerous emerging methods of cancer treatment including chemodynamic therapy,photothermal therapy,photodynamic therapy,sonodynamic therapy,immunotherapy and chemotherapy have rapidly entered a new stage of development.However,the single treatment mode is often constrained by the complex tumor microenvironment.Recently,the nanomaterials and nanomedicine have emerged as promising avenues to overcome the limitation in cancer theranostics.Especially,metal-organic frameworks(MOFs)have gained considerable interests in cancer therapy because of their customizable morphologies,easy functionalization,large specific surface area,and good biocompatibility.Among these MOFs,iron-based MOFs(Fe-MOFs)are particularly promising for cancer treatment due to their properties as nano-photosensitizers,peroxidase-like activity,bioimaging contrast capabilities,and biodegradability.Utilizing their structural regularity and synthetic tunability,Fe-MOFs can be engineered to incorporate organic molecules or other inorganic nanoparticles,thereby creating multifunctional nanoplatforms for single or combined theranostic modes.Herein,the minireview focuses on the recent advancements of the Fe-MOFs-based nanoplatforms for self-enhanced imaging and treatment at tumor sites.Furthermore,the clinical research development of Fe-MOFs-based nanoplatforms is discussed,addressing key challenges and innovations for the future.Our review aims to provide novice researchers with a foundational understanding of advanced cancer theranostic modes and promote their clinical applications through the modification of Fe-MOFs.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(No.92361202)National Natural Science Foundation of China(No.12204481).
文摘Persistent luminescence is a unique optical phenomenon that continues to emit light for minutes or even hours after the excitation stops,which can significantly enhance the sensitivity and signal-to-noise ratio of imaging[1].Among numerous persistent luminescence materials,lanthanide-doped fluoride nanoparticles have shown tunable persistent luminescence across the UV-vis-NIR spectrum(200-1700 nm)under X-ray excitation and adjustable size,promising significant applications in deep-tissue imaging[2,3],security encryption,and data storage[4].In particular,those exhibiting NIR-II luminescence(1000-1700 nm)provide key advantages such as deeper tissue penetration,higher contrast,and minimal interference from biological autofluorescence.However,challenges such as low brightness and rapid signal decay,especially in the NIR-II region,limit their effectiveness in long-term monitoring,including tumor theranostics[5].Traditional approaches like size control and surface passivation yield only marginal improvements,underscoring the need for next-generation nanoparticles with superior NIR-II brightness.
基金Grant from Liaoning Provincal National Nature Science Foundation of China(No.2023-MS-202)is greatly acknowledged.
文摘As the third essential trace element in the human body,copper plays a crucial role in various physiological processes,which lays the foundation for its broad applications in cancer treatments.The overview of copper,including pharmacokinetics,signaling pathways,and homeostasis dysregulation,is hereby discussed.Additionally,cuproptosis,as a newly proposed cell death mechanism associated with copper accumulation,is analyzed and further developed for efficient cancer treatment.Different forms of Cu-based nanoparticles and their advantages,aswell as limiting factors,are introduced.Moreover,the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities.In addition,Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential,which are widely explored in diverse cancer therapies and combined therapies.Reducing the concentration of Cu^(2+)/Cu^(+)is another cancer-killing method,and chelators can meet this need.More importantly,challenges and future prospects are identified for further research.
基金funded by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.820LH027)the Hainan Provincial Natural Science Foundation of China(No.823RC472)+4 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2021WNLOKF008)the Hainan University Scientific Research Foundation(No.KYQD(ZR)19107)Natural Science Research Talent Project of Hainan Medical University(No.JBGS202101)Hainan Province Clinical Medical Center(2021)Project for Functional Materials and Molecular Imaging Science Innovation Group of Hainan Medical University。
文摘Triphenylamine(TPA)-based aggregation-induced emission luminogens(TPA-AIEgens),a type of photoactive material utilizing the typical TPA moiety,has recently attracted increasing attention for the diagnostics and treatment of tumors due to their remarkable chemo-physical performance in optoelectronic research.TPA-AIEgens are distinguished from other photoactive agents by their strong fluorescence,good sensitivity,high signal-to-noise ratio,resistance to photobleaching,and lack of high concentration or aggregation-caused fluoresce quenching effects.In this review,we summarize the current advancements and the biomedical progress of TPA-AIEgens in tumor theranostics.First,the design principles of TPAAIEgens photoactive agents as well as the advanced targeting strategies for nuclei,cell membranes,cell organelle and tumors were introduced,respectively.Next,the applications of TPA-AIEgens in tumor diagnosis and therapeutic techniques were reviewed.Last,the challenges and prospects of TPA-AIEgens for cancer therapy were performed.The given landscape of the TPA-AIEgens hereby is meaningful for the further design and utilization of the novel photoactive material,which could be beneficial for the development of clinic applications.
基金Research Project on Skin Injury&Repair,Grant/Award Numbers:2021XB008,BKJ21J016Tianjin Natural Science Foundation,Grant/Award Numbers:21JCZDJC00070,22JCZXJC00170Nankai University Eye Institute,Grant/Award Number:NKYKD202203。
文摘Extracellular vesicles(EVs)are tiny vesicles released by various cells that contain a variety of proteins,lipids,and nucleic acids,which can have a wide range of effects on other cells.The dynamic composition and contents of EVs can serve as sensitive biomarkers for diagnosing and monitoring various cardiovascular diseases(CVDs).In addition to their diagnostic potential,EVs are therapeutic agents capable of precise modulation and amelioration of CVDs,because of their innate ability to encapsulate and deliver bioactive molecules.This growing field reveals the intricate interplay between EVs and cardiovascular pathophysiology,showing that EVs can act as messengers of intercellular communication for CVD regenerative therapy.Extracellular vesicles serve as dual agents in the field of theranostics,both as diagnostic biomarkers able to decode nuanced molecular signatures of CVDs and as potent vehicles for targeted therapeutic interventions.This review delves into the evolving landscape of EVs,uncovering their diagnostic and therapeutic prospects and emphasizing their growing importance in shaping the future of cardiovascular theranostics.
文摘Mental disorders comprise a range of abnormal states that affect an individual's cognition,emotion,behavior,and social functioning,potentially distorting their perception of reality and seriously impacting their daily life,work,and interpersonal relationships.Mental disorders,including anxiety disorders,depression,schizo-phrenia,and bipolar disorder,impact not only individuals,but also their families and societies at large.The incidence of mental disorders increased by 31.6%between 1990 and 2007,and this trend continued between 2007 and 2017(percentage change:13.5%)[1].In China,the lifetime prevalence of mental disorders is 16.6%and has been reported to exhibit a trend toward increasing over time[2].In terms of the global disease burden,mental disorders were reported to account for 5.3%of total disability-adjusted life years in 2019,underscoring their significant impact on public health[3].
基金supported by the National Natural Science Foundation of China(Nos.32071399 and 62175071)the Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515011988 and 2021A1515110265)+2 种基金the Science and Technology Program of Guangzhou(No.2019050001)the Project on the Education Department of Guangdong(Nos.2021KTSCX238 and 2022ZDZX2077)the Natural Science Research Project of Guangdong Food and Drug Vocational College(Nos.2020ZR01 and 2022ZR02).
文摘Theranostic carbon dots(CDs)have attracted widespread attention recently due to their tunable optical properties and diverse bioactivities.Beyond fluorescent imaging application,the photothermal property endows CDs with the potential for microbial inactivation.However,realization of the effective conversion between fluorescence and heat in one CD system has rarely been reported.Herein,we provide a simple strategy for targeted microbial theranostics based on 4-carboxyphenylboronic acid-derived CDs(PCBA-CDs)which possess concentration-dependent photoluminescence/photothermal features.At lower concentrations,PCBA-CDs show bright and stable fluorescent signals ranging from blue to green.The fluorescence intensity gradually decreases with increasing concentration,while on the contrary,the photothermal effect of PCBA-CDs ascends progressively due to the rearrangement of electronic transitions in aggregated CDs.PCBA-CDs also demonstrate high affinity to the polysaccharide structures on the surface of microbe which allows rapid microbial fluorescence imaging as well as specific photothermal ablation of pathogens in skin wounds using PCBA-CDs at lower and higher concentrations,respectively.This study supplies a facile nanotheranostic strategy for just-in-time microbial management using bioactive CDs.
文摘Theranostics are one of the practical aspects of personalized medicine.This concept was designed to describe a material combining diagnosis,treatment and follow up of a disease.It evolved and included molecular targeting and nanotechnologies that incorporate both diagnosis and therapeutics.In this editorial,we are presenting briefly the concept and evolution of theranostics,highlighting many applications of theranostics in daily practice and discussing future perspectives and aspects of this model in gastrointestincal cancers.
基金supported by the National Key Research and Development Program of China(2017YFA0205201 and 2016YFC0106900)the National Natural Science Foundation of China(81925019,81422023,81701752,81901808,and U1705281)+2 种基金the Fundamental Research Funds for the Central Universities(20720200019 and 20720190088)the Program for New Century Excellent Talents in University,China(No.NCET-13-0502)the China Postdoctoral Science Foundation(2019M662545)。
文摘Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics,but antimicrobial photodynamic therapy(aPDT)provides an excellent alternative.This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species(ROS),which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern.When replacing light with low-frequency ultrasonic wave to activate sensitizer,a novel ultrasounddriven treatment emerges as antimicrobial sonodynamic therapy(aSDT).Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections,especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers,and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization.In this review,we systemically outline the mechanisms,targets,and current progress of aPDT/SDT for bacterial theranostic application.Furthermore,potential limitations and future perspectives are also highlighted.
文摘In the last decade,the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases,especially cancer,is held great attention.Up to date,several approaches have been employed in order to develop smart nanotheranostics,which combine bioactive targeting on specific tissues as well as diagnostic properties.The nanotheranostics can deliver therapeutic agents by concomitantly monitor the therapy response in real-time.Consequently,the possibility of over-or under-dosing is decreased.Various non-invasive imaging techniques have been used to quantitatively monitor the drug delivery processes.Radiolabeling of nanomaterials is widely used as powerful diagnostic approach on nuclear medicine imaging.In fact,various radiolabeled nanomaterials have been designed and developed for imaging tumors and other lesions due to their efficient characteristics.Inorganic nanoparticles as gold,silver,silica based nanomaterials or organic nanoparticles as polymers,carbon based nanomaterials,liposomes have been reported asmultifunctional nanotheranostics.In this review,the imaging modalities according to their use in various diseases are summarized,providing special details for radiolabeling.In further,the most current nanotheranostics categorized via the used nanomaterials are also summed up.To conclude,this review can be beneficial for medical and pharmaceutical society as well as material scientists who work in the field of nanotheranostics since they can use this research as guide for producing newer and more efficient nanotheranostics.
基金the National Natural Science Foundation of China(Grant Nos.81903662,81860630,and 81560577)China Postdoctoral Science Foundation Grant(Grant No.2019M661057)+3 种基金the Applied Basic Research Programs of Shanxi Province(Grant No.201901D 211347)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0428)the Startup Foundation for Doctors of Shanxi Province(Grant No.SD1827)the Startup Foundation for Doctors of Shanxi Medical University(Grant No.XD1824).
文摘Colorectal cancer(CRC)is the most common gastrointestinal tract cancer worldwide and is associated with high morbidity and mortality.The development of nanosized drug delivery systems has provided a new direction in CRC treatment.Among these systems,magnetic nanoparticle(MNP)-based multifunctional platforms provide a novel strategy for magnetic resonance imaging(MRI)-related cancer theranostics.At the beginning o f this original review,the carcinogenesis and treatment status o f CRC are summarized.Then,diversified preparation and functionalization methods of MNPs are systematically analyzed,followed by MRIinvolved theranostic strategies.The latest progress in MRI-mediated multimode diagnosis and image-guided targeted therapy in CRC management is the main focus.Finally,the major challenges in promoting MRI-induced precise theranostics of CRC in clinical practice are discussed.
基金the financial support from the National Natural Science Foundation of China(Nos.51902323,51872300 and U1832110)Postdoctoral Science Foundation of China(No.2020M671831)+1 种基金S&T Innovation 2025 Major Special Program of Ningbo(No.2018B10054)Zhejiang Provincial Natural Science Foundation of China(No.LY20B050003)。
文摘Carbon dots(CDs), as a new member of carbon nanostructures, have been widely applied in extensive fields due to their exceptional physicochemical properties. While, the emissions of most reported CDs are located in the blue to green range under the excitation of ultraviolet or blue light, which severely limits their practical applications, especially in photovoltaic and biological fields. Studies that focused on synthesizing CDs with long-wavelength(red to near-infrared) emission/excitation features(simply named L-w CDs) and exploring their potential applications have been frequently reported in recent years. In this review, we analyzed the key influence factors for the synthesis of CDs with long wavelength and multicolor(containing long wavelength) emissive properties, discussed possible fluorescence mechanism,and summarized their applications in sensing and cancer theranostics. Finally, the existing challenges and potential opportunities of L-w CDs are presented.
基金the US METAvivor Early Career Investigator Award(W.T.)and Harvard Medical School/Brigham and Women’s Hospital Department of Anesthesiology-Basic Scientist Grant(W.T.)National Natural Science Foundation of China(Nos.21877049,21807117)+2 种基金Major Program for Tackling Key Problems of Industrial Technology in Guangzhou(201902020013)Dedicated Fund for Promoting High-Quality Marine Economic Development in Guangdong Province(GDOE-2019-A31,2020-035)Dr J.Ouyang was supported by the China Postdoctoral Science Foundation(No.2020M683173).
文摘Stanene(Sn)-based materials have been extensively applied in industrial production and daily life,but their potential biomedical application remains largely unexplored,which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials.Herein,we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional(2D)Sn nanosheets(SnNSs).The obtained SnNSs exhibited a typical sheet-like structure with an average size of~100 nm and a thickness of~5.1 nm.After PEGylation,the resulting PEGylated SnNSs(SnNSs@PEG)exhibited good stability,superior biocompatibility,and excellent photothermal performance,which could serve as robust photothermal agents for multi-modal imaging(fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer.Furthermore,we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs,revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal.This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics.This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.
基金supported by the National Research Foundation of Korea(CRI project no.2018R1A3B1052702 and 2019M3E5D1A01068998,J.S.K.)Basic Science Research Program(2020R1A6A3A01100551,M.W.and 2020R1A6A3A01100558,S.K.)funded by the Ministry of EducationKorea University Grant。
文摘The insistent demand for space-controllable delivery,which reduces the side effects of non-steroidal antiinflammatory drugs(NSAIDs),has led to the development of a new theranostics-based approach for anti-inflammatory therapy.The current anti-inflammatory treatments can be improved by designing a drug delivery system responsive to the inflammatory site biomarker,hydrogen polysulfide(H_(2)S_(n)).Here,we report a noveltheranostic agent 1(TA1),consisting of three parts:H_(2)S_(n)-mediated triggering part,a two-photon fluorophore bearing mitochondria targeting unit(Rhodol-TPP),and anti-inflammatory COX inhibitor(indomethacin).In vitro experiments showed that TA1 selectively reacts with H_(2)S_(n)to concomitantly release both Rhodol-TPP and indomethacin.Confocal-microscopy imaging of inflammation-inducedlive cells suggested that TA1 is localized in the mitochondria where the H_(2)S_(n)is overexpressed.The TA1 reacted with H_(2)S_(n)in the endogenous and exogenous H_(2)S_(n)environments and in lipopolysaccharide treated inflammatory cells.Moreover,TA1 suppressed COX-2 level in the inflammatory-induced cells and prostaglandin E 2(PGE2)level in blood serum from inflammation-induced mouse models.In vivo experiments with inflammation-induced mouse models suggested that TA1 exhibits inflammation-site-elective drug release followed by significant therapeutic e ects,showing its function as a theranostic agent,capable of both anti-inflammatory therapy and precise diagnosis.Theranostic behavior of TA1 is highly applicable in vivo model therapeutics for the inflammatory disease.
基金Key Scientific Research Program for Young Scholars in Fujian,Grant/Award Number:2021ZQNZD016Fujian Natural Science Foundation for Distinguished Young Scholars,Grant/Award Number:2022D005+3 种基金Medical and Health Guidance Projects of Xiamen,Grant/Award Numbers:3502Z20209269,3502Z20224ZD1001National Natural Science Foundation of China,Grant/Award Numbers:82071961,82102094Fujian Natural Science Foundation for Youth Innovation,Grant/Award Number:2022J05314Fujian Research and Training Grants for Young and Middle-Aged Leaders in Healthcare。
文摘Quinoline-based fibroblast activation protein(FAP)inhibitor(FAPI)-based positron emission tomography(PET)imaging and radioligand therapy(RLT)are being investigated for use in a wide variety of diseases,and recent results have been promising.This review summarizes the current status of FAPI radiopharmaceuticals in PET imaging of malignant tumors and benign conditions and compares their diagnostic efficacy with ^(18)F-fluorodeoxyglucose.In addition,we summarize the previously published FAP-targeted RLT data and discuss its current clinical use and future potential.Our qualitative summary can inform future research directions,medical guidelines,and optimal clinical decision-making.
基金financially supported by the National Natural Science Foundation of China(Grant No.81501585)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20150348)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.15KJB310019)China Postdoctoral Science Foundation(Grant No.2015M570475 and 2016T90496)
文摘Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics.Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound(US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents(UCAs)an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles(SPIOs), Cu S nanoparticles, DNA, si RNA, gold nanoparticles(GNPs), gold nanorods(GNRs), gold nanoshell(GNS), graphene oxides(GOs), polypyrrole(PPy) nanocapsules, Prussian blue(PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics.
基金the National Natural Science Foundation of China(Nos. 21878088, 21476077)Key Project of the Shanghai Science and Technology Committee (No. 18DZ1112703) for financial support。
文摘Naphthalimide derivatives have good planarity and large conjugated structure and therefore possess photophysical properties and biological activities. Previously, our group discovered seven-membered heterocyclic derivatives via modifying 4-and 5-positions of naphthalimide skeleton and found the derivatives had good water solubility and showed large stokes shift and strong fluorescence in water. In this article, we designed and synthesized more seven-membered ring-fused naphthalimide derivatives(Y1-Y16)by introducing different substitutions on the imide group. Among them, Y1, Y5, Y9 were found to show similar cytotoxic activities with Amonafide against A549 and HL60 cells, with IC50values at 10^(-6)mol/L.What is more, the asymmetry derivatives(Y1 and Y5) showed high fluorescent quantum yields in the aqueous phase(Ф = 0.47). Considering the great fluorescence quantum yields in water and the potent anti-tumor activities of the representative seven-membered ring-fused naphthalimides, they have potentials to be used as agents for cancer theranostics.
基金financial support from the National Natural Science Foundation of China(No.82274104,82074024,82374042)the Open Project of Chinese Materia Medica FirstClass Discipline of Nanjing University of Chinese Medicine(No.2020YLXK019)Young Elite Scientists Sponsorship Program by CACM(No.2021-QNRC2-A01)
文摘Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity,from preventive and diagnostic to therapeutic fields.Lipoproteins,because of their inherent blood-brain barrier permeability and lesion-homing capability,have been identified as promising strategies for high-performance theranostics of brain diseases.However,the application of natural lipoproteins remains limited owing to insufficient accumulation and complex purification processes,which can be critical for individual therapeutics and clinical translation.To address these issues,lipoprotein-inspired nano drug-delivery systems(nano-DDSs),which have been learned from nature,have been fabricated to achieve synergistic drug delivery involving site-specific accumulation and tractable preparation with versatile physicochemical functions.In this review,the barriers in brain disease treatment,advantages of state-of-the-art lipoprotein-inspired nano-DDSs,and bio-interactions of such nano-DDSs are highlighted.Furthermore,the characteristics and advanced applications of natural lipoproteins and tailor-made lipoprotein-inspired nano-DDSs are summarized.Specifically,the key designs and current applications of lipoprotein-inspired nano-DDSs in the field of brain disease therapy are intensively discussed.Finally,the current challenges and future perspectives in the field of lipoprotein-inspired nano-DDSs combined with other vehicles,such as exosomes,cell membranes,and bacteria,are discussed.