Crimean-Congo hemorrhagic fever virus(CCHFV)is a biosafety level-4(BSL-4)pathogen that causes Crimean-Congo hemorrhagic fever(CCHF)characterized by hemorrhagic manifestation,multiple organ failure and high mortality r...Crimean-Congo hemorrhagic fever virus(CCHFV)is a biosafety level-4(BSL-4)pathogen that causes Crimean-Congo hemorrhagic fever(CCHF)characterized by hemorrhagic manifestation,multiple organ failure and high mortality rate,posing great threat to public health.Despite the recently increasing research efforts on CCHFV,host cell responses associated with CCHFV infection remain to be further characterized.Here,to better understand the cellular response to CCHFV infection,we performed a transcriptomic analysis in human kidney HEK293 cells by high-throughput RNA sequencing(RNA-seq)technology.In total,496 differentially expressed genes(DEGs),including 361 up-regulated and 135 down-regulated genes,were identified in CCHFV-infected cells.These regulated genes were mainly involved in host processes including defense response to virus,response to stress,regulation of viral process,immune response,metabolism,stimulus,apoptosis and protein catabolic process.Therein,a significant up-regulation of type III interferon(IFN)signaling pathway as well as endoplasmic reticulum(ER)stress response was especially remarkable.Subsequently,representative DEGs from these processes were well validated by RT-qPCR,confirming the RNA-seq results and the typical regulation of IFN responses and ER stress by CCHFV.Furthermore,we demonstrate that not only type I but also type III IFNs(even at low dosages)have substantial anti-CCHFV activities.Collectively,the data may provide new and comprehensive insights into the virus-host interactions and particularly highlights the potential role of type III IFNs in restricting CCHFV,which may help inform further mechanistic delineation of the viral infection and development of anti-CCHFV strategies.展开更多
Objective:Airtightness of containment structures of a high-level biosafety laboratory is a critical parameter for preventing leakage of harmful bioaerosols.The aim of this study is to investigate the sealing technolog...Objective:Airtightness of containment structures of a high-level biosafety laboratory is a critical parameter for preventing leakage of harmful bioaerosols.The aim of this study is to investigate the sealing technology of stainless steel structural airtight biosafety containment facilities.Methods:An experimental study was conducted on a domestic high-level pathogenic microorganism model laboratory,considering the sealing process of the containment structure,including airtight doors,pass boxes,dunk tanks,through-wall pipeline sealing devices,and sealed floor drains.Results:The results indicate that the airtightness of the model laboratory containment structure meets the tightness requirements of a biosafety level-4(BSL-4)laboratory.They also indicate that the construction technology of stainless steel enclosure structures used by the laboratory and the tightness performance and installation process of the developed airtight protective equipment meet the technical requirements of a BSL-4 laboratory.Conclusions:This successful model laboratory indicates that China has the research and development capacity for stainless steel airtight containment structure manufacturing processes,airtight protective equipment,and technical capacity for independent construction of the highest-level pathogenic microorganism laboratories.展开更多
基金supported by the National Key Research and Development Program of China(2018YFA0507202)the National Natural Science Foundation of China(32170171,31870162,and 82161138003)the Youth Innovation Promotion Association of Chinese Academy of Sciences.
文摘Crimean-Congo hemorrhagic fever virus(CCHFV)is a biosafety level-4(BSL-4)pathogen that causes Crimean-Congo hemorrhagic fever(CCHF)characterized by hemorrhagic manifestation,multiple organ failure and high mortality rate,posing great threat to public health.Despite the recently increasing research efforts on CCHFV,host cell responses associated with CCHFV infection remain to be further characterized.Here,to better understand the cellular response to CCHFV infection,we performed a transcriptomic analysis in human kidney HEK293 cells by high-throughput RNA sequencing(RNA-seq)technology.In total,496 differentially expressed genes(DEGs),including 361 up-regulated and 135 down-regulated genes,were identified in CCHFV-infected cells.These regulated genes were mainly involved in host processes including defense response to virus,response to stress,regulation of viral process,immune response,metabolism,stimulus,apoptosis and protein catabolic process.Therein,a significant up-regulation of type III interferon(IFN)signaling pathway as well as endoplasmic reticulum(ER)stress response was especially remarkable.Subsequently,representative DEGs from these processes were well validated by RT-qPCR,confirming the RNA-seq results and the typical regulation of IFN responses and ER stress by CCHFV.Furthermore,we demonstrate that not only type I but also type III IFNs(even at low dosages)have substantial anti-CCHFV activities.Collectively,the data may provide new and comprehensive insights into the virus-host interactions and particularly highlights the potential role of type III IFNs in restricting CCHFV,which may help inform further mechanistic delineation of the viral infection and development of anti-CCHFV strategies.
基金This study was supported by the National Key Research And Development Program,China(2016YFC1201403).
文摘Objective:Airtightness of containment structures of a high-level biosafety laboratory is a critical parameter for preventing leakage of harmful bioaerosols.The aim of this study is to investigate the sealing technology of stainless steel structural airtight biosafety containment facilities.Methods:An experimental study was conducted on a domestic high-level pathogenic microorganism model laboratory,considering the sealing process of the containment structure,including airtight doors,pass boxes,dunk tanks,through-wall pipeline sealing devices,and sealed floor drains.Results:The results indicate that the airtightness of the model laboratory containment structure meets the tightness requirements of a biosafety level-4(BSL-4)laboratory.They also indicate that the construction technology of stainless steel enclosure structures used by the laboratory and the tightness performance and installation process of the developed airtight protective equipment meet the technical requirements of a BSL-4 laboratory.Conclusions:This successful model laboratory indicates that China has the research and development capacity for stainless steel airtight containment structure manufacturing processes,airtight protective equipment,and technical capacity for independent construction of the highest-level pathogenic microorganism laboratories.