Neurodegenerative diseases are a group of illnesses characterized by the gradual deterioration of the central nervous system,leading to a decline in patients'cognitive,motor,and emotional abilities.Neuroinflammati...Neurodegenerative diseases are a group of illnesses characterized by the gradual deterioration of the central nervous system,leading to a decline in patients'cognitive,motor,and emotional abilities.Neuroinflammation plays a significant role in the progression of these diseases.However,there is limited research on therapeutic approaches to specifically target neuroinflammation.The role of T lymphocytes,which are crucial mediators of the adaptive immune response,in neurodegenerative diseases has been increasingly recognized.This review focuses on the involvement of T lymphocytes in the neuroinflammation associated with neurodegenerative diseases.The pathogenesis of neurodegenerative diseases is complex,involving multiple mechanisms and pathways that contribute to the gradual degeneration of neurons,and T cells are a key component of these processes.One of the primary factors driving neuroinflammation in neurodegenerative diseases is the infiltration of T cells and other neuroimmune cells,including microglia,astrocytes,B cells,and natural killer cells.Different subsets of CD4~+T cells,such as Th1,Th2,Th17,and regulatory T cells,can differentiate into various cell types and perform distinct roles within the neuroinflammatory environment of neurodegenerative diseases.Additionally,CD8~+T cells,which can directly regulate immune responses and kill target cells,also play several important roles in neurodegenerative diseases.Clinical trials investigating targeted T cell therapies for neurodegenerative diseases have shown that,while some patients respond positively,others may not respond as well and may even experience adverse effects.Targeting T cells precisely is challenging due to the complexity of immune responses in the central nervous system,which can lead to undesirable side effects.However,with new insights into the pathophysiology of neurodegenerative diseases,there is hope for the establishment of a solid theoretical foundation upon which innovative treatment strategies that target T cells can be developed in the future.展开更多
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex...With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.展开更多
Parkinson's disease is a neurodegenerative disorder marked by the degeneration of dopaminergic neurons and clinical symptoms such as tremors,rigidity,and slowed movements.A key feature of Parkinson's disease i...Parkinson's disease is a neurodegenerative disorder marked by the degeneration of dopaminergic neurons and clinical symptoms such as tremors,rigidity,and slowed movements.A key feature of Parkinson's disease is the accumulation of misfoldedα-synuclein,forming insoluble Lewy bodies in the substantia nigra pars compacta,which contributes to neurodegeneration.Theseα-synuclein aggregates may act as autoantigens,leading to T-cell-mediated neuroinflammation and contributing to dopaminergic cell death.Our perspective explores the hypothesis that Parkinson's disease may have an autoimmune component,highlighting research that connects peripheral immune responses with neurodegeneration.T cells derived from Parkinson's disease patients appear to have the potential to initiate an autoimmune response againstα-synuclein and its modified peptides,possibly leading to the formation of neo-epitopes.Recent evidence associates Parkinson's disease with abnormal immune responses,as indicated by increased levels of immune cells,such as CD4^(+)and CD8^(+)T cells,observed in both patients and mouse models.The convergence of T cells filtration increasing major histocompatibility complex molecules,and the susceptibility of dopaminergic neurons supports the hypothesis that Parkinson's disease may exhibit autoimmune characteristics.Understanding the immune mechanisms involved in Parkinson's disease will be crucial for developing therapeutic strategies that target the autoimmune aspects of the disease.Novel approaches,including precision medicine based on major histocompatibility complex/human leukocyte antigen typing and early biomarker identification,could pave the way for immune-based treatments aimed at slowing or halting disease progression.This perspective explores the relationship between autoimmunity and Parkinson's disease,suggesting that further research could deepen understanding and offer new therapeutic avenues.In this paper,it is organized to provide a comprehensive perspective on the autoimmune aspects of Parkinson's disease.It investigates critical areas such as the autoimmune response observed in Parkinson's disease patients and the role of autoimmune mechanisms targetingα-synuclein in Parkinson's disease.The paper also examines the impact of CD4~+T cells,specifically Th1 and Th17,on neurons through in vitro and ex vivo studies.Additionally,it explores howα-synuclein influences glia-induced neuroinflammation in Parkinson's disease.The discussion extends to the clinical implications and therapeutic landscape,offering insights into potential treatments.Consequently,we aim to provide a comprehensive perspective on the autoimmune aspects of Parkinson's disease,incorporating both supportive and opposing views on its classification as an autoimmune disorder and exploring implications for clinical applications.展开更多
基金supported by Yunnan Provincial Science and Technology Department,Nos.202403AC100007(to NZ),202301AY070001-239(to JY)Yunnan Revitalization Talent Support Program,Nos.2019-069(to ZY)and 2019-300(to JY)+1 种基金the National Natural Science Foundation of China,Nos.32260196(to JY)a grant from Kunming Medical University,No.2024S085(to KL)。
文摘Neurodegenerative diseases are a group of illnesses characterized by the gradual deterioration of the central nervous system,leading to a decline in patients'cognitive,motor,and emotional abilities.Neuroinflammation plays a significant role in the progression of these diseases.However,there is limited research on therapeutic approaches to specifically target neuroinflammation.The role of T lymphocytes,which are crucial mediators of the adaptive immune response,in neurodegenerative diseases has been increasingly recognized.This review focuses on the involvement of T lymphocytes in the neuroinflammation associated with neurodegenerative diseases.The pathogenesis of neurodegenerative diseases is complex,involving multiple mechanisms and pathways that contribute to the gradual degeneration of neurons,and T cells are a key component of these processes.One of the primary factors driving neuroinflammation in neurodegenerative diseases is the infiltration of T cells and other neuroimmune cells,including microglia,astrocytes,B cells,and natural killer cells.Different subsets of CD4~+T cells,such as Th1,Th2,Th17,and regulatory T cells,can differentiate into various cell types and perform distinct roles within the neuroinflammatory environment of neurodegenerative diseases.Additionally,CD8~+T cells,which can directly regulate immune responses and kill target cells,also play several important roles in neurodegenerative diseases.Clinical trials investigating targeted T cell therapies for neurodegenerative diseases have shown that,while some patients respond positively,others may not respond as well and may even experience adverse effects.Targeting T cells precisely is challenging due to the complexity of immune responses in the central nervous system,which can lead to undesirable side effects.However,with new insights into the pathophysiology of neurodegenerative diseases,there is hope for the establishment of a solid theoretical foundation upon which innovative treatment strategies that target T cells can be developed in the future.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R195)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.
基金supported by the National Research Foundation of South Korea(2023R1A2C2004516,RS-2023-00219399 to SPY,and 2022R1I1A1A01063513 to MGJ)。
文摘Parkinson's disease is a neurodegenerative disorder marked by the degeneration of dopaminergic neurons and clinical symptoms such as tremors,rigidity,and slowed movements.A key feature of Parkinson's disease is the accumulation of misfoldedα-synuclein,forming insoluble Lewy bodies in the substantia nigra pars compacta,which contributes to neurodegeneration.Theseα-synuclein aggregates may act as autoantigens,leading to T-cell-mediated neuroinflammation and contributing to dopaminergic cell death.Our perspective explores the hypothesis that Parkinson's disease may have an autoimmune component,highlighting research that connects peripheral immune responses with neurodegeneration.T cells derived from Parkinson's disease patients appear to have the potential to initiate an autoimmune response againstα-synuclein and its modified peptides,possibly leading to the formation of neo-epitopes.Recent evidence associates Parkinson's disease with abnormal immune responses,as indicated by increased levels of immune cells,such as CD4^(+)and CD8^(+)T cells,observed in both patients and mouse models.The convergence of T cells filtration increasing major histocompatibility complex molecules,and the susceptibility of dopaminergic neurons supports the hypothesis that Parkinson's disease may exhibit autoimmune characteristics.Understanding the immune mechanisms involved in Parkinson's disease will be crucial for developing therapeutic strategies that target the autoimmune aspects of the disease.Novel approaches,including precision medicine based on major histocompatibility complex/human leukocyte antigen typing and early biomarker identification,could pave the way for immune-based treatments aimed at slowing or halting disease progression.This perspective explores the relationship between autoimmunity and Parkinson's disease,suggesting that further research could deepen understanding and offer new therapeutic avenues.In this paper,it is organized to provide a comprehensive perspective on the autoimmune aspects of Parkinson's disease.It investigates critical areas such as the autoimmune response observed in Parkinson's disease patients and the role of autoimmune mechanisms targetingα-synuclein in Parkinson's disease.The paper also examines the impact of CD4~+T cells,specifically Th1 and Th17,on neurons through in vitro and ex vivo studies.Additionally,it explores howα-synuclein influences glia-induced neuroinflammation in Parkinson's disease.The discussion extends to the clinical implications and therapeutic landscape,offering insights into potential treatments.Consequently,we aim to provide a comprehensive perspective on the autoimmune aspects of Parkinson's disease,incorporating both supportive and opposing views on its classification as an autoimmune disorder and exploring implications for clinical applications.