The synchronizer is a key component of automatic mechanical transmission(AMT)equipped in electric vehicles,but the inertial lock-ring synchronizer(ILRS)commonly used there is not suitable especially for pure electric ...The synchronizer is a key component of automatic mechanical transmission(AMT)equipped in electric vehicles,but the inertial lock-ring synchronizer(ILRS)commonly used there is not suitable especially for pure electric vehicles without a clutch because of big shift impact.To make the shifting process rapid and smooth,a new synchronizer named pressure-controllable friction ring synchronizer(PCFRS)was designed.Initially,the inevitable shortcoming of ILRS was verified by simulation and test.Furthermore,the mechanical characteristics and advantages of the new synchronizer over ILRS were analyzed.Then,the formulations describing the dynamic transmission based on the working mechanism of the PCFRS were established.Finally,the shifting simulation results with PCFRS and ILRS based on the same operating conditions were compared and analyzed.The research shows that the PCFRS can meet the main shifting evaluation index of an AMT without complex control methods,as well as it takes only 0.2406 s to finish the comfortable and zero-speed-difference shifting.The shifting quality of PCFRS is better than that of the ILRS.It lays a foundation for using the new synchronizer as a part of clutchless AMTs equipped in pure electric vehicles.展开更多
A new early-late synchronizer is proposed to improve tracking speed. The performance of the traditional early-late synchronizer is analyzed in detail, the result shows that the different location and length of integra...A new early-late synchronizer is proposed to improve tracking speed. The performance of the traditional early-late synchronizer is analyzed in detail, the result shows that the different location and length of integral period can influence the discriminator characteristic, an improved integral structure is provided which can tracking the synchronization error better. According to the good tracking performance of Kalman filter, a new loop filter is designed. The new early-late synchronizer adopts both the new integral structure and the new loop filter. The analysis with loop theory and simulation results in Simulink show that the new bit synchronizer possesses higher tracking speed than the traditional early-late synchronizer.展开更多
Metal flowing has been numerically simulated for synchronizer hub at different forming conditions. The influences of billet shape, frictional factor,deformation degree and radius of rounded corner on form- ing for be...Metal flowing has been numerically simulated for synchronizer hub at different forming conditions. The influences of billet shape, frictional factor,deformation degree and radius of rounded corner on form- ing for been studied and the processing parameters have been optimized. On the basis, a new technol- ogy of refilling multiplicity forming has been put forward and workpiece that meets the requirement of synchronizer hub has been manufactured.展开更多
As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impeda...As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.展开更多
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin...This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.展开更多
Orthogonal Frequency Division Multiplexing ( OFDM) system is sensitive to Carrier Frequency Offset ( CFO ). In this paper, traditional Maximum Likelihood Estimators (MLE) for CFO of OFDM are introduced first. Th...Orthogonal Frequency Division Multiplexing ( OFDM) system is sensitive to Carrier Frequency Offset ( CFO ). In this paper, traditional Maximum Likelihood Estimators (MLE) for CFO of OFDM are introduced first. Then, averaging method and a-filter are introduced as Low Pass Filter (LPF) to improve the performance of cyclic prefix estimator. The bandwith of LPF is determined by the coherence time of radio channel. Estimation performance in multipath channel is analyzed. Outlier picking-out scheme is proposed to improve performance further. Performance of close-loop structure is presented briefly, which is worse than that of open-loop structure. Finally, a parallel switch structure of frequency synchronizer is proposed for mobile OFDM systems. The scheme ezcploits training sequence and cyclic prefix. The proposed synchronizer has a wide acquisition range. It is accurate and robust in both AWGN channel and multipath channels. The complexity is low due to functionality of a-filter. A better performance of frequevlcy synchronization is obtained comparing to that of existing Maximum Likelihood Estimator( MLEs). We achieve these advantages without loss of bandwidth efficiency.展开更多
BACKGROUND The incidence of malignant gastrointestinal(GI)tumors is increasing,and advancements in medical care have significantly improved patient survival rates.As a result,the number of cases involving multiple pri...BACKGROUND The incidence of malignant gastrointestinal(GI)tumors is increasing,and advancements in medical care have significantly improved patient survival rates.As a result,the number of cases involving multiple primary cancers(MPC)has also increased.The rarity of MPC and the absence of sensitive and specific dia-gnostic markers often lead to missed or incorrect diagnoses.It is,therefore,of vital importance to improve the vigilance of clinicians and the accurate diagnosis of this disease.Patients with GI malignancies face a higher relative risk of deve-loping additional primary malignant tumors compared to those with other systemic tumors.Vigilant monitoring and follow-up are crucial,especially for high-risk groups,which include older adults,men,those with addictions to alcohol and tobacco,those with a family history of tumors,and those who have undergone radiotherapy.CASE SUMMARY In this article,we report three cases of MPC,each involving malignant tumors of the GI tract as the initial primary carcinoma,offering insights that may aid in effectively managing similar cases.CONCLUSION Patients with GI malignancies face a higher MPC risk.Developing screening and follow-up protocols may enhance detection and treatment outcomes.展开更多
Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical...Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.展开更多
Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
Permanent magnet synchronous motor(PMSM),known for their compact size and high-power density,is widely used in fields such as electric vehicles and servo drives.However,traditional PID control methods for PMSM cannot ...Permanent magnet synchronous motor(PMSM),known for their compact size and high-power density,is widely used in fields such as electric vehicles and servo drives.However,traditional PID control methods for PMSM cannot dynamically adjust parameters according to varying operating conditions.To address this issue,this paper proposes a PID control method based on a radial basis function(RBF)neural network,which adaptively tunes the PID controller parameters.First,an offline RBF neural network with optimal structural parameters is trained using the current and speed data of the PMSM,and then employed to construct the RBF-PID controller.During online training,the Jacobian information calculated via the RBF neural network is used to adaptively adjust the PID parameters.Simultaneously,the structural parameters of the RBF network are updated in reverse based on the error between the predicted and reference speed values.Finally,numerical simulations and experiments in the context of electric vehicle drive control show that the maximum speed errors of the SMC controller and the RBF-PID controller are 1.97 km/h and 0.17 km/h,respectively.Moreover,the RBF-PID controller outperforms both the SMC and traditional PID controllers in handling sudden speed changes.展开更多
This paper propose a comprehensive data-driven prediction framework based on machine learning methods to investigate the lag synchronization phenomenon in coupled chaotic systems,particularly in cases where accurate m...This paper propose a comprehensive data-driven prediction framework based on machine learning methods to investigate the lag synchronization phenomenon in coupled chaotic systems,particularly in cases where accurate mathematical models are challenging to establish or where system equations remain unknown.The Long Short-Term Memory(LSTM)neural network is trained using time series acquired from the desynchronization system states,subsequently predicting the lag synchronization transition.In the experiments,we focus on the Lorenz system with time-varying delayed coupling,studying the effects of coupling coefficients and time delays on lag synchronization,respectively.The results indicate that with appropriate training,the machine learning model can adeptly predict the lag synchronization occurrence and transition.This study not only enhances our comprehension of complex network synchronization behaviors but also underscores the potential and practical applications of machine learning in exploring nonlinear dynamic systems.展开更多
Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters base...Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses.展开更多
The Kuramoto model is one of the most profound and classical models of coupled phase oscillators.Because of the global couplings between oscillators,its precise critical exponents can be obtained using the mean-field ...The Kuramoto model is one of the most profound and classical models of coupled phase oscillators.Because of the global couplings between oscillators,its precise critical exponents can be obtained using the mean-field approximation(MFA),where the time average of the modulus of the mean-field is defined as the order parameter.Here,we further study the phase fluctuations of oscillators from the mean-field using the eigen microstate theory(EMT),which was recently developed.The synchronization of phase fluctuations is identified by the condensation and criticality of eigen microstates with finite eigenvalues,which follow the finite-size scaling with the same critical exponents as those of the MFA in the critical regime.Then,we obtain the complete critical behaviors of phase oscillators in the Kuramoto model.We anticipate that the critical behaviors of general phase oscillators can be investigated by using the EMT and different critical exponents from those of the MFA will be obtained.展开更多
This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Fu...This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.展开更多
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod...The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.展开更多
This paper proposes a ring-star neural network with small-world characteristics(RS-SWNN)based on the classical ring-star network,and combines the Izhikevich neuron model.RS-SWNN incorporates small-world characteristic...This paper proposes a ring-star neural network with small-world characteristics(RS-SWNN)based on the classical ring-star network,and combines the Izhikevich neuron model.RS-SWNN incorporates small-world characteristics,better mimicking the non-uniform connectivity of biological neural networks.According to the different coupling strength settings of D_(ring)and D_(star),the dynamical behavior of the network is studied,and the synchronicity differences of the network under different coupling strengths are revealed.In addition,a discrete memristor is used to simulate the effects of electromagnetic radiation.The modulation effects of varying radiation intensities on the network synchronization are further analyzed.The study shows that the electromagnetic radiation effect significantly impacts the neuronal synchronization behavior,especially in its modulation of network synchronization under varying coupling strengths.Numerical simulation is carried out using MATLAB software,and the corresponding results are obtained.展开更多
Mechanical snap-through instability of bi-stable structures may find many practical applications such as state switching and energy transforming.Although there exist diverse bi-stable structures capable of snap-throug...Mechanical snap-through instability of bi-stable structures may find many practical applications such as state switching and energy transforming.Although there exist diverse bi-stable structures capable of snap-through instability,it is still difficult for a structure with high slenderness to undergo the axial snap-through instability with a large stroke.Here,an elastic structure with high slenderness is simply constructed by a finite number of identical,conventional bi-stable units with relatively low slenderness in series connection.For realizing the axial snap-through instability with a large stroke,common scissors mechanisms are further introduced as rigid constraints to guarantee the synchronous snap-through instability of these bi-stable units.The global feature of the large-stroke snap-through instability realized here is robust and even insusceptible to the local out-of-synchronization of individual units.The present design provides a simple and feasible way to achieve the large-stroke snap-through instability of slender structures,which is expected to be particularly useful for state switching and energy transforming in narrow spaces.展开更多
Recently,large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation.They are the simplest systems for dynamical stability and parametric resonance.In this model,th...Recently,large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation.They are the simplest systems for dynamical stability and parametric resonance.In this model,the Mathieu equation plays the most fundamental role for us to understand the stability and instability of a single ion.In this work,we investigate the dynamics of trapped ions with the Coulomb interaction based on the Hamiltonian equation.We show that the many-body interaction will not influence the phase diagram for instability.Then,the dynamics of this model in the large damping limit will also be analytically calculated using few trapped ions.Furthermore,we find that in the presence of modulation,synchronization dynamics can be observed,showing an exchange of velocities between distant ions on the left side and on the right side of the trap.These dynamics resemble that of the exchange of velocities in Newton's cradle for the collision of balls at the same time.These dynamics are independent of their initial conditions and the number of ions.As a unique feature of the interacting Mathieu equation,we hope this behavior,which leads to a quasi-periodic solution,can be measured in current experimental systems.Finally,we have also discussed the effect of anharmonic trapping potential,showing the desynchronization during the collision process.It is hoped that the dynamics in this many-body Mathieu equation with damping may find applications in quantum simulations.This model may also find interesting applications in dynamics systems as a pure mathematical problem,which may be beyond the results in the Floquet theorem.展开更多
The event-based vision sensor(EVS),which can generate efficient spiking data streams by exclusively detecting motion,exemplifies neuromorphic vision methodologies.Generally,its inherent lack of texture features limits...The event-based vision sensor(EVS),which can generate efficient spiking data streams by exclusively detecting motion,exemplifies neuromorphic vision methodologies.Generally,its inherent lack of texture features limits effectiveness in complex vision processing tasks,necessitating supplementary visual information.However,to date,no event-based hybrid vision solution has been developed that preserves the characteristics of complete spike data streams to support synchronous computation architectures based on spiking neural network(SNN).In this paper,we present a novel spike-based sensor with digitized pixels,which integrates the event detection structure with the pulse frequency modulation(PFM)circuit.This design enables the simultaneous output of spiking data that encodes both temporal changes and texture information.Fabricated in 180 nm process,the proposed sensor achieves a resolution of 128×128,a maximum event rate of 960 Meps,a grayscale frame rate of 117.1 kfps,and a measured power consumption of 60.1 mW,which is suited for high-speed,low-latency,edge SNNbased vision computing systems.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51775478)Natural Science Foundation of Hebei Province(Grant Nos.E2020203078,E2020203174)+1 种基金Open Project of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2021-11)Graduate Innovation Funding Project of Hebei Province(Grant No.CXZZSS2021063)。
文摘The synchronizer is a key component of automatic mechanical transmission(AMT)equipped in electric vehicles,but the inertial lock-ring synchronizer(ILRS)commonly used there is not suitable especially for pure electric vehicles without a clutch because of big shift impact.To make the shifting process rapid and smooth,a new synchronizer named pressure-controllable friction ring synchronizer(PCFRS)was designed.Initially,the inevitable shortcoming of ILRS was verified by simulation and test.Furthermore,the mechanical characteristics and advantages of the new synchronizer over ILRS were analyzed.Then,the formulations describing the dynamic transmission based on the working mechanism of the PCFRS were established.Finally,the shifting simulation results with PCFRS and ILRS based on the same operating conditions were compared and analyzed.The research shows that the PCFRS can meet the main shifting evaluation index of an AMT without complex control methods,as well as it takes only 0.2406 s to finish the comfortable and zero-speed-difference shifting.The shifting quality of PCFRS is better than that of the ILRS.It lays a foundation for using the new synchronizer as a part of clutchless AMTs equipped in pure electric vehicles.
基金Sponsored bythe Ministerial Level Advanced Research Foundation(2000)
文摘A new early-late synchronizer is proposed to improve tracking speed. The performance of the traditional early-late synchronizer is analyzed in detail, the result shows that the different location and length of integral period can influence the discriminator characteristic, an improved integral structure is provided which can tracking the synchronization error better. According to the good tracking performance of Kalman filter, a new loop filter is designed. The new early-late synchronizer adopts both the new integral structure and the new loop filter. The analysis with loop theory and simulation results in Simulink show that the new bit synchronizer possesses higher tracking speed than the traditional early-late synchronizer.
文摘Metal flowing has been numerically simulated for synchronizer hub at different forming conditions. The influences of billet shape, frictional factor,deformation degree and radius of rounded corner on form- ing for been studied and the processing parameters have been optimized. On the basis, a new technol- ogy of refilling multiplicity forming has been put forward and workpiece that meets the requirement of synchronizer hub has been manufactured.
基金supported by theMajor Science and Technology Projects of China Southern Power Grid(Grant number CGYKJXM20210328).
文摘As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.
文摘This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.
文摘Orthogonal Frequency Division Multiplexing ( OFDM) system is sensitive to Carrier Frequency Offset ( CFO ). In this paper, traditional Maximum Likelihood Estimators (MLE) for CFO of OFDM are introduced first. Then, averaging method and a-filter are introduced as Low Pass Filter (LPF) to improve the performance of cyclic prefix estimator. The bandwith of LPF is determined by the coherence time of radio channel. Estimation performance in multipath channel is analyzed. Outlier picking-out scheme is proposed to improve performance further. Performance of close-loop structure is presented briefly, which is worse than that of open-loop structure. Finally, a parallel switch structure of frequency synchronizer is proposed for mobile OFDM systems. The scheme ezcploits training sequence and cyclic prefix. The proposed synchronizer has a wide acquisition range. It is accurate and robust in both AWGN channel and multipath channels. The complexity is low due to functionality of a-filter. A better performance of frequevlcy synchronization is obtained comparing to that of existing Maximum Likelihood Estimator( MLEs). We achieve these advantages without loss of bandwidth efficiency.
基金Supported by Gansu Provincial Natural Science Foundation,No.21JR1RA010In-Hospital Research Fund of Gansu Provincial Hospital,No.23GSSYD-5.
文摘BACKGROUND The incidence of malignant gastrointestinal(GI)tumors is increasing,and advancements in medical care have significantly improved patient survival rates.As a result,the number of cases involving multiple primary cancers(MPC)has also increased.The rarity of MPC and the absence of sensitive and specific dia-gnostic markers often lead to missed or incorrect diagnoses.It is,therefore,of vital importance to improve the vigilance of clinicians and the accurate diagnosis of this disease.Patients with GI malignancies face a higher relative risk of deve-loping additional primary malignant tumors compared to those with other systemic tumors.Vigilant monitoring and follow-up are crucial,especially for high-risk groups,which include older adults,men,those with addictions to alcohol and tobacco,those with a family history of tumors,and those who have undergone radiotherapy.CASE SUMMARY In this article,we report three cases of MPC,each involving malignant tumors of the GI tract as the initial primary carcinoma,offering insights that may aid in effectively managing similar cases.CONCLUSION Patients with GI malignancies face a higher MPC risk.Developing screening and follow-up protocols may enhance detection and treatment outcomes.
基金supported by the National Natural Science Foundation of China(Nos.52177059 and 52407064).
文摘Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
文摘Permanent magnet synchronous motor(PMSM),known for their compact size and high-power density,is widely used in fields such as electric vehicles and servo drives.However,traditional PID control methods for PMSM cannot dynamically adjust parameters according to varying operating conditions.To address this issue,this paper proposes a PID control method based on a radial basis function(RBF)neural network,which adaptively tunes the PID controller parameters.First,an offline RBF neural network with optimal structural parameters is trained using the current and speed data of the PMSM,and then employed to construct the RBF-PID controller.During online training,the Jacobian information calculated via the RBF neural network is used to adaptively adjust the PID parameters.Simultaneously,the structural parameters of the RBF network are updated in reverse based on the error between the predicted and reference speed values.Finally,numerical simulations and experiments in the context of electric vehicle drive control show that the maximum speed errors of the SMC controller and the RBF-PID controller are 1.97 km/h and 0.17 km/h,respectively.Moreover,the RBF-PID controller outperforms both the SMC and traditional PID controllers in handling sudden speed changes.
基金supported by the National Natural Science Foundation of China(No.52174184)。
文摘This paper propose a comprehensive data-driven prediction framework based on machine learning methods to investigate the lag synchronization phenomenon in coupled chaotic systems,particularly in cases where accurate mathematical models are challenging to establish or where system equations remain unknown.The Long Short-Term Memory(LSTM)neural network is trained using time series acquired from the desynchronization system states,subsequently predicting the lag synchronization transition.In the experiments,we focus on the Lorenz system with time-varying delayed coupling,studying the effects of coupling coefficients and time delays on lag synchronization,respectively.The results indicate that with appropriate training,the machine learning model can adeptly predict the lag synchronization occurrence and transition.This study not only enhances our comprehension of complex network synchronization behaviors but also underscores the potential and practical applications of machine learning in exploring nonlinear dynamic systems.
基金supported in part by the National Natural Science Foundation of China(62033005,62273270)the Natural Science Foundation of Shaanxi Province(2023JC-XJ17)
文摘Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses.
基金supported by the National Natural Science Foundation of China(Grant Nos.12135003,71731002,and 12471141)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20231179)+1 种基金the China Postdoctoral Science Foundation-Tianjin Joint Support Program(Grant No.2023T001TJ)the Tianjin Education Commission scientific Research Project(Grant No.2023SK070)。
文摘The Kuramoto model is one of the most profound and classical models of coupled phase oscillators.Because of the global couplings between oscillators,its precise critical exponents can be obtained using the mean-field approximation(MFA),where the time average of the modulus of the mean-field is defined as the order parameter.Here,we further study the phase fluctuations of oscillators from the mean-field using the eigen microstate theory(EMT),which was recently developed.The synchronization of phase fluctuations is identified by the condensation and criticality of eigen microstates with finite eigenvalues,which follow the finite-size scaling with the same critical exponents as those of the MFA in the critical regime.Then,we obtain the complete critical behaviors of phase oscillators in the Kuramoto model.We anticipate that the critical behaviors of general phase oscillators can be investigated by using the EMT and different critical exponents from those of the MFA will be obtained.
基金Hong Kong Research Grants Council under the GRF(9043664).
文摘This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.
基金supported by the National Natural Science Foundation of China(No.62401597)the Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Scientific Research Project of National University of Defense Technology,China(No.ZK22-02)。
文摘The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.
基金supported by the Key Projects of Hunan Provincial Department of Education(Grant No.23A0133)the National Natural Science Foundation of China(Grant No.62171401)。
文摘This paper proposes a ring-star neural network with small-world characteristics(RS-SWNN)based on the classical ring-star network,and combines the Izhikevich neuron model.RS-SWNN incorporates small-world characteristics,better mimicking the non-uniform connectivity of biological neural networks.According to the different coupling strength settings of D_(ring)and D_(star),the dynamical behavior of the network is studied,and the synchronicity differences of the network under different coupling strengths are revealed.In addition,a discrete memristor is used to simulate the effects of electromagnetic radiation.The modulation effects of varying radiation intensities on the network synchronization are further analyzed.The study shows that the electromagnetic radiation effect significantly impacts the neuronal synchronization behavior,especially in its modulation of network synchronization under varying coupling strengths.Numerical simulation is carried out using MATLAB software,and the corresponding results are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.11972027,12472093,and 11772272)the New Interdisciplinary Cultivation Fund of Southwest Jiaotong University(Grant No.2682022JX001)+1 种基金the Frontier Science and Technology Cultivation Project of Southwest Jiaotong University(Grant No.2682022KJ048)the Laboratory of Flexible Electronics Technology at Tsinghua University.
文摘Mechanical snap-through instability of bi-stable structures may find many practical applications such as state switching and energy transforming.Although there exist diverse bi-stable structures capable of snap-through instability,it is still difficult for a structure with high slenderness to undergo the axial snap-through instability with a large stroke.Here,an elastic structure with high slenderness is simply constructed by a finite number of identical,conventional bi-stable units with relatively low slenderness in series connection.For realizing the axial snap-through instability with a large stroke,common scissors mechanisms are further introduced as rigid constraints to guarantee the synchronous snap-through instability of these bi-stable units.The global feature of the large-stroke snap-through instability realized here is robust and even insusceptible to the local out-of-synchronization of individual units.The present design provides a simple and feasible way to achieve the large-stroke snap-through instability of slender structures,which is expected to be particularly useful for state switching and energy transforming in narrow spaces.
基金supported by the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0301200,2021ZD0303200,and 2021ZD0301500)the Alliance of International Science Organizations(ANSO)。
文摘Recently,large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation.They are the simplest systems for dynamical stability and parametric resonance.In this model,the Mathieu equation plays the most fundamental role for us to understand the stability and instability of a single ion.In this work,we investigate the dynamics of trapped ions with the Coulomb interaction based on the Hamiltonian equation.We show that the many-body interaction will not influence the phase diagram for instability.Then,the dynamics of this model in the large damping limit will also be analytically calculated using few trapped ions.Furthermore,we find that in the presence of modulation,synchronization dynamics can be observed,showing an exchange of velocities between distant ions on the left side and on the right side of the trap.These dynamics resemble that of the exchange of velocities in Newton's cradle for the collision of balls at the same time.These dynamics are independent of their initial conditions and the number of ions.As a unique feature of the interacting Mathieu equation,we hope this behavior,which leads to a quasi-periodic solution,can be measured in current experimental systems.Finally,we have also discussed the effect of anharmonic trapping potential,showing the desynchronization during the collision process.It is hoped that the dynamics in this many-body Mathieu equation with damping may find applications in quantum simulations.This model may also find interesting applications in dynamics systems as a pure mathematical problem,which may be beyond the results in the Floquet theorem.
基金supported in part by the National Key Research and Development Program of China(Grant No.2022YFB2804401)the National Natural Science Foundation of China(Grant Nos.62334008,62134004,62404218)+1 种基金the Beijing Natural Science Foundation(Grant No.Z220005)Chinese Academy of Sciences(Grant No.ZDBS-LY-JSC008).
文摘The event-based vision sensor(EVS),which can generate efficient spiking data streams by exclusively detecting motion,exemplifies neuromorphic vision methodologies.Generally,its inherent lack of texture features limits effectiveness in complex vision processing tasks,necessitating supplementary visual information.However,to date,no event-based hybrid vision solution has been developed that preserves the characteristics of complete spike data streams to support synchronous computation architectures based on spiking neural network(SNN).In this paper,we present a novel spike-based sensor with digitized pixels,which integrates the event detection structure with the pulse frequency modulation(PFM)circuit.This design enables the simultaneous output of spiking data that encodes both temporal changes and texture information.Fabricated in 180 nm process,the proposed sensor achieves a resolution of 128×128,a maximum event rate of 960 Meps,a grayscale frame rate of 117.1 kfps,and a measured power consumption of 60.1 mW,which is suited for high-speed,low-latency,edge SNNbased vision computing systems.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.