Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh...Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.展开更多
In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec han...In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.展开更多
The development of high order thinking has been considered as a national priority of learning. By using three iteration action research in six elementary schools in Guangzhou, China for about 1 year and a half, we fou...The development of high order thinking has been considered as a national priority of learning. By using three iteration action research in six elementary schools in Guangzhou, China for about 1 year and a half, we found that visual thinking tools can improve students' high order thinking ability and change the traditional teaching method. By using this activity frame work, the teachers can better understand what are the students thinking about and the students can use the thinking tools to help themselves solve complex problems and discuss with other people. The reason we do this research is to improve the high-order thinking ability of primary student. In this paper, we summarize an activity frame work of using visual thinking tools to improve students thinking ability. And the frame work can be divided into three stages: preparatory stage, implementation stage and assessment stage. And different stage has different activity. Though this activity frame work is not perfect enough, we will improve it in our future study.展开更多
基金supported by National Key R&D Program of China(2016YFB0901600)the National Natural Science Foundation of China(51772313 , U1830113 and 51802334)
文摘Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.
文摘In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.
文摘The development of high order thinking has been considered as a national priority of learning. By using three iteration action research in six elementary schools in Guangzhou, China for about 1 year and a half, we found that visual thinking tools can improve students' high order thinking ability and change the traditional teaching method. By using this activity frame work, the teachers can better understand what are the students thinking about and the students can use the thinking tools to help themselves solve complex problems and discuss with other people. The reason we do this research is to improve the high-order thinking ability of primary student. In this paper, we summarize an activity frame work of using visual thinking tools to improve students thinking ability. And the frame work can be divided into three stages: preparatory stage, implementation stage and assessment stage. And different stage has different activity. Though this activity frame work is not perfect enough, we will improve it in our future study.