In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state wh...In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.展开更多
Although coal swelling/shrinking during coal seam gas extraction has been studied for decades,its impacts on the evolution of permeability are still not well understood.This has long been recognized,but no satisfactor...Although coal swelling/shrinking during coal seam gas extraction has been studied for decades,its impacts on the evolution of permeability are still not well understood.This has long been recognized,but no satisfactory solutions have been found.In previous studies,it is normally assumed that the matrix swelling/shrinking strain can be split between the fracture and the bulk coal and that the splitting coefficient remains unchanged during gas sorption.In this study,we defined the fracture strain as a function of permeability change ratio and back-calculated the fracture strains at different states.In the equilibrium state,the gas pressure is steady within the coal;in the non-equilibrium state,the gas pressure changes with time.For equilibrium states,the back-calculated fracture strains are extremely large and may be physically impossible in some case.For non-equilibrium states,two experiments were conducted:one for a natural coal sample and the other for a reconstructed one.For the fractured coal,the evolution of permeability is primarily controlled by the transition of coal fracture strain or permeability from local matrix swelling effect to global effect.For the reconstituted coal,the evolution of pore strain or permeability is primarily controlled by the global effect.展开更多
According to the well-known models for rubberlike elasticity with strain- stii^ening effects, the unbounded strain energy is generated with the unlimitedly growing stress when the stretch approaches certain limits. To...According to the well-known models for rubberlike elasticity with strain- stii^ening effects, the unbounded strain energy is generated with the unlimitedly growing stress when the stretch approaches certain limits. Toward a solution to this issue, an explicit approach is proposed to derive the multi-axial elastic potentials directly from the uniaxial potentials. Then, a new multi-axial potential is presented to characterize the strain-stiffening effect by prescribing suitable forms of uniaxia] potentials so that the strain energy is always bounded as the stress grows to infinity. Numerical examples show good agreement with a number of test data.展开更多
Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal str...Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.展开更多
Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are prefe...Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are preferred.To extract strain fields from noisy displacement fields is always a challenging topic.In this study,a finite element method for smoothing displacement fields and calculating strain fields is proposed.An experimental test case on a holed aluminum specimen under tension is applied to validate this method.The heterogeneous displacement fields are measured by digital image correlation(DIC).By this proposed method,the result shows that the measuring noise on experimental displacement fields can be successfully removed,and strain fields can be reconstructed in the arbitrary area.展开更多
Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify th...Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.展开更多
文摘In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.
基金supported by the State Key Research Development Program of China(Grant No.2017YFC0804203)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-DQC029)the Australian Research Council under Grant DP200101293.
文摘Although coal swelling/shrinking during coal seam gas extraction has been studied for decades,its impacts on the evolution of permeability are still not well understood.This has long been recognized,but no satisfactory solutions have been found.In previous studies,it is normally assumed that the matrix swelling/shrinking strain can be split between the fracture and the bulk coal and that the splitting coefficient remains unchanged during gas sorption.In this study,we defined the fracture strain as a function of permeability change ratio and back-calculated the fracture strains at different states.In the equilibrium state,the gas pressure is steady within the coal;in the non-equilibrium state,the gas pressure changes with time.For equilibrium states,the back-calculated fracture strains are extremely large and may be physically impossible in some case.For non-equilibrium states,two experiments were conducted:one for a natural coal sample and the other for a reconstructed one.For the fractured coal,the evolution of permeability is primarily controlled by the transition of coal fracture strain or permeability from local matrix swelling effect to global effect.For the reconstituted coal,the evolution of pore strain or permeability is primarily controlled by the global effect.
基金supported by the National Natural Science Foundation of China(No.11372172)the Start-up Fund from the 211-Project of the Education Committee of China(No.S.15-B002-09-032)the Research Innovation Fund of Shanghai University(No.S.10-0401-12-001)
文摘According to the well-known models for rubberlike elasticity with strain- stii^ening effects, the unbounded strain energy is generated with the unlimitedly growing stress when the stretch approaches certain limits. Toward a solution to this issue, an explicit approach is proposed to derive the multi-axial elastic potentials directly from the uniaxial potentials. Then, a new multi-axial potential is presented to characterize the strain-stiffening effect by prescribing suitable forms of uniaxia] potentials so that the strain energy is always bounded as the stress grows to infinity. Numerical examples show good agreement with a number of test data.
基金sponsored by the Central Level Scientific Research Institutes of Basic R&D Special Fund Business of the Institute of Crustal Dynamics,CEA(ZDJ2017-25)
文摘Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.
基金supported by the National Basic Research Program of China("973"Project, Grant No.2010CB631005,2011CB606105)the National Natural Science Foundation of China(Grant No.10625209, 10732080,90916010)+2 种基金China Postdoctoral Science Foundation (Grant No.20090460335)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20090002110048)the opening funds from the State Key Laboratory of Explosion Science and Technology (KFJJ10-18Y)
文摘Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are preferred.To extract strain fields from noisy displacement fields is always a challenging topic.In this study,a finite element method for smoothing displacement fields and calculating strain fields is proposed.An experimental test case on a holed aluminum specimen under tension is applied to validate this method.The heterogeneous displacement fields are measured by digital image correlation(DIC).By this proposed method,the result shows that the measuring noise on experimental displacement fields can be successfully removed,and strain fields can be reconstructed in the arbitrary area.
基金Supported by National Natural Science Foundation of China (No. 50778077 and No. 50608036)
文摘Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.