Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The s...Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The study cohort included 3,728 workers who met the selection criteria for the Tanggang Occupational Cohort(TGOC)between 2017 and 2022.A group-based trajectory model was used to identify the FBG trajectories.Environmental risk scores(ERS)were constructed using regression coefficients from the occupational hazard model as weights.Univariate and multivariate logistic regression analyses were performed to explore the effects of occupational hazard factors using the ERS on FBG trajectories.Results FBG trajectories were categorized into three groups.An association was observed between high temperature,noise exposure,and FBG trajectory(P<0.05).Using the first quartile group of ERS1 as a reference,the fourth quartile group of ERS1 had an increased risk of medium and high FBG by 1.90and 2.21 times,respectively(odds ratio[OR]=1.90,95%confidence interval[CI]:1.17–3.10;OR=2.21,95%CI:1.09–4.45).Conclusion An association was observed between occupational hazards based on ERS and FBG trajectories.The risk of FBG trajectory levels increase with an increase in ERS.展开更多
The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
The constrained weighted-non-negative matrix factorization(CW-NMF)hybrid receptor model was applied to study the influence of steelmaking activities on PM_(2.5)(particulate matter with equivalent aerodynamic diameter ...The constrained weighted-non-negative matrix factorization(CW-NMF)hybrid receptor model was applied to study the influence of steelmaking activities on PM_(2.5)(particulate matter with equivalent aerodynamic diameter less than 2.5μm)composition in Dunkerque,Northern France.Semi-diurnal PM_(2.5)samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals,water-soluble ions,and total carbon using inductively coupled plasma–atomic emission spectrometry(ICP-AES),ICP-mass spectrometry(ICP-MS),ionic chromatography and micro elemental carbon analyzer.The elemental composition shows that NO_(3)^(-),SO_(4)^(2-),NH_4~+and total carbon are the main PM_(2.5)constituents.Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced.The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios.Moreover Rb/Cr,Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions.The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation.Eleven source profiles with various contributions were identified:8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities.Between them,secondary nitrates,secondary sulfates and combustion profiles give the highest contributions and account for 93%of the PM_(2.5)concentration.The steelwork facilities contribute in about 2%of the total PM_(2.5)concentration and appear to be the main source of Cr,Cu,Fe,Mn,Zn.展开更多
As for the existing problems of boilers in integrated steelworks, the multi-boiler system could be quantitatively optimized with the decomposition and coordination method. Then, case studies were carried out based on ...As for the existing problems of boilers in integrated steelworks, the multi-boiler system could be quantitatively optimized with the decomposition and coordination method. Then, case studies were carried out based on the data of an integrated steelworks. Two groups of actual production records were contrastively analyzed, and the calculation results from the optimized program of these two groups indicated that for groups 1 and 2, the costs fall by 5.06% and 3.79%and the fuel consumptions decrease by 2.72% and 1.45%, respectively, compared with the actual data. To analyze the cost and fuel consumption change under the same condition of total load demand, assigned fuel consumption and water temperature, five sets of data were selected for further analysis. It was shown that the total cost and fuel consumption of the optimized program could fall by 3.5% and 1.6% respectively, compared with the actual production records. The optimal allocation significantly contributed to energy conservation and cost reduction. The effects of the system energy conservation cannot be realized by single equipment energy conservation. They were complementary to each other, and should be put on the same stage.展开更多
The Guiyang Steelworks is a national key special steelworks, and also one of the country’s national largest 500 industrial enterprises. At present, it has formed an annual production capacity of 300 thousand tons of ...The Guiyang Steelworks is a national key special steelworks, and also one of the country’s national largest 500 industrial enterprises. At present, it has formed an annual production capacity of 300 thousand tons of steel and 310 thousand tons of steel products. It owns eight production branch steelworks for electric furnance steel-making, rolling steel, forging steel, steel tube, rock drilling steel and building materials, and their relevant auxiliary matching systems. It has established two research institutes: a Special Steel Research Institute and a Rock Drilling Steel Research Institute. It is the national largest base for rock drilling steel production and scientific research,展开更多
基金supported by the Key Research and Development Program of the Ministry of Science and Technology of China(grant number:2016YF0900605)the Key Research and Development Program of Hebei Province(grant number:192777129D)+1 种基金the Joint Fund for Iron and Steel of the Natural Science Foundation of Hebei Province(grant number:H2016209058)the National Natural Science Foundation for Regional Joint Fund of China(grant number:U22A20364)。
文摘Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The study cohort included 3,728 workers who met the selection criteria for the Tanggang Occupational Cohort(TGOC)between 2017 and 2022.A group-based trajectory model was used to identify the FBG trajectories.Environmental risk scores(ERS)were constructed using regression coefficients from the occupational hazard model as weights.Univariate and multivariate logistic regression analyses were performed to explore the effects of occupational hazard factors using the ERS on FBG trajectories.Results FBG trajectories were categorized into three groups.An association was observed between high temperature,noise exposure,and FBG trajectory(P<0.05).Using the first quartile group of ERS1 as a reference,the fourth quartile group of ERS1 had an increased risk of medium and high FBG by 1.90and 2.21 times,respectively(odds ratio[OR]=1.90,95%confidence interval[CI]:1.17–3.10;OR=2.21,95%CI:1.09–4.45).Conclusion An association was observed between occupational hazards based on ERS and FBG trajectories.The risk of FBG trajectory levels increase with an increase in ERS.
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.
基金financially supported by the Nord-Pas-de-Calais Region Councilthe Ministry of Higher Education and Research+1 种基金the European Regional Development FundsAdib Kfoury acknowledges the“Pole Metropolitain Cote d'Opale”(PMCO)for its PhD financial support
文摘The constrained weighted-non-negative matrix factorization(CW-NMF)hybrid receptor model was applied to study the influence of steelmaking activities on PM_(2.5)(particulate matter with equivalent aerodynamic diameter less than 2.5μm)composition in Dunkerque,Northern France.Semi-diurnal PM_(2.5)samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals,water-soluble ions,and total carbon using inductively coupled plasma–atomic emission spectrometry(ICP-AES),ICP-mass spectrometry(ICP-MS),ionic chromatography and micro elemental carbon analyzer.The elemental composition shows that NO_(3)^(-),SO_(4)^(2-),NH_4~+and total carbon are the main PM_(2.5)constituents.Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced.The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios.Moreover Rb/Cr,Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions.The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation.Eleven source profiles with various contributions were identified:8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities.Between them,secondary nitrates,secondary sulfates and combustion profiles give the highest contributions and account for 93%of the PM_(2.5)concentration.The steelwork facilities contribute in about 2%of the total PM_(2.5)concentration and appear to be the main source of Cr,Cu,Fe,Mn,Zn.
基金Item Sponsored by the Fundamental Research Funds for the Central University of China(N140203002)
文摘As for the existing problems of boilers in integrated steelworks, the multi-boiler system could be quantitatively optimized with the decomposition and coordination method. Then, case studies were carried out based on the data of an integrated steelworks. Two groups of actual production records were contrastively analyzed, and the calculation results from the optimized program of these two groups indicated that for groups 1 and 2, the costs fall by 5.06% and 3.79%and the fuel consumptions decrease by 2.72% and 1.45%, respectively, compared with the actual data. To analyze the cost and fuel consumption change under the same condition of total load demand, assigned fuel consumption and water temperature, five sets of data were selected for further analysis. It was shown that the total cost and fuel consumption of the optimized program could fall by 3.5% and 1.6% respectively, compared with the actual production records. The optimal allocation significantly contributed to energy conservation and cost reduction. The effects of the system energy conservation cannot be realized by single equipment energy conservation. They were complementary to each other, and should be put on the same stage.
文摘The Guiyang Steelworks is a national key special steelworks, and also one of the country’s national largest 500 industrial enterprises. At present, it has formed an annual production capacity of 300 thousand tons of steel and 310 thousand tons of steel products. It owns eight production branch steelworks for electric furnance steel-making, rolling steel, forging steel, steel tube, rock drilling steel and building materials, and their relevant auxiliary matching systems. It has established two research institutes: a Special Steel Research Institute and a Rock Drilling Steel Research Institute. It is the national largest base for rock drilling steel production and scientific research,