This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine a...This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.展开更多
Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple ...Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines.展开更多
文摘This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.
基金Financial support from the National Natural Science Foundation of China under Grant(22393954 and 22078358)is gratefully acknowledged.
文摘Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines.