Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
The paper presents the principles of a method, which in two simple stages makes possible to carry out the statically calculation of values of forces acting in the fiat static indeterminate trusses. In each stage, it i...The paper presents the principles of a method, which in two simple stages makes possible to carry out the statically calculation of values of forces acting in the fiat static indeterminate trusses. In each stage, it is considered the static determinate truss, scheme of which is obtained after remove the suitable number of members from the basic static indeterminate truss. The both intermediate statically determinate trusses are of the same clear span and they are loaded by forces of half values applied to the corresponding truss nodes. The method applies one of the typical procedures of calculation of the statically determinate trusses and then it is applied in an appropriate way the rule of superposition for obtaining the final values of forces acting in particular members of the basic truss. The values of forces calculated in this way are of a very close approximation to the force values determined in the special and complex ways being considered as the exact calculation methods. The proposed method can be useful mostly but not only for the initial structural design of such systems. The simplicity of the two-stage method justifies an assumption that it can be relatively easy and worthy to adjust to the requirements of the computer aided technology of statically calculation of the complex forms of trusses.展开更多
This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser(SCR) by using the finite element method. The critical top tension is the minimum top tension that c...This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser(SCR) by using the finite element method. The critical top tension is the minimum top tension that can maintain the equilibrium of the SCR. If the top tension is smaller than the critical value, the equilibrium of the SCR does not exist. If the top tension is larger than the critical value, there are two possible equilibrium configurations. These two configurations exhibit the nonlinear large displacement. The configuration with the smaller displacement is stable, while the one with larger displacement is unstable. The numerical results show that the increases in the riser's vertical distances, horizontal offsets, riser's weights, internal flow velocities, and current velocities increase the critical top tensions of the SCR. In addition, the parametric studies are also performed in order to investigate the limit states for the analysis and design of the SCR.展开更多
Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was compos...Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.展开更多
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have oppor...Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have opportunity to use geodesy result for some years for elastic parameters estimation. Static solution from elastic theory may be used for the interpretation of long term results. It presents static elastic parameter. The inverse problem for different types of vertical surface loading on one year period is calculated. Two cases of loading with maximal and minimal area are presented. Results are determined by space geodesy and leveling methods. Current relation between atmospheric pressure and vertical displacements was estimated at the center of Siberian Anti Cyclone with size varied from 2000 km to 3000 kin. Pressure-displacement coefficients (PDC) can be achieved by three years obser- vation (0.997 mm/mbar for NVSK GPS station). It is used for elastic module study of geology medium with maximum thickness up to 600 km. In the context of elastic model, the modulus of rigidity is estimated to be 113 GPa. Vast expanse of anti-cyclone may relate with rheology of crust and upper mantle. Smaller size of surface loading - local loading is seasonal variation of water reservoir. Annual vertical changes were obtained by leveling near the dam of the reservoir. PDC ratio was 1.15 mm/bar for these places. In elastic theory, the Young modulus E = 80 GPa (Poisson ratio = 0.25, the modulus of rigidity - 32 GPa) was calculated by sixteen years of leveling measurements. This result can effectively be represented for upper crust. Our results were checked by solution for coseismic displacement of Chyia- Altai earthquake (Sep. 27, 2003, M = 7.3). Coseismic results calculated by static modules agree with experimental coseismic GPS data at 10% level.展开更多
[Objective] This study aimed to study the adsorption performance of activated carbon prepared from corn stalks. [Methed] With granular activated carbon prepared from corn stalks as research object, adsorption performa...[Objective] This study aimed to study the adsorption performance of activated carbon prepared from corn stalks. [Methed] With granular activated carbon prepared from corn stalks as research object, adsorption performance simulation test equipment was set up to investigate the adsorption performance of the prepared activated carbon for methanol by static weight method. In addition, the effects of adsorption bed structure, activated carbon particle size in adsorption bed, addition amount of graphite powder in activated carbon and modified activated carbon on systematic adsorption performance were studied. [Result] Under conditions of same activated carbon and same adsorption temperature, the adsorption performance of new adsorption bed A (installed with finned diaphragm adsorbate tubes) was signifi- cantly better than that of unmodified adsorption bed B. Compared with adsorption bed B, adsorption bed A took 5 min shorter to reach the adsorption amount of 0.22 g/g. Under the same adsorption temperature, the adsorption performance of bed loaded with different-particle size activated carbon was significantly better than that loaded with same-particle size activated carbon. The bed loaded with different-particle size activated carbon took 16 min shorter to reach the adsorption capacity of 0.22 g/g compared with the bed loaded with same-particle size activated carbon. Adding proper amount of graphite powder in activated carbon could enhance the thermal conductivity and strengthen the adsorption properties. The optimum addition amount of graphite powder was 20% of the total amount of activated carbon. Com- pared with that of the control, the adsorption performance of activated carbon soaked by weak acidic solution was significantly improved. It took 3 min shorter to reach 87.1% of the equilibrium adsorption amount. [Conclusion] This study will provide reference for optimizing structural design of adsorption bed and adsorption refrigeration system.展开更多
Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile drive...Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.展开更多
Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visib...Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visible(UV-Vis) spectra. Its thermal stability was also examined by thermogravimetric analysis(TGA) and a differential scanning calorimeter(DSC) . The mole fraction solubilities of [C3SO3HMIM][HSO4]) in 12 selected solvents(n-pentane,n-hexane,n-heptane,benzene,toluene,ethylbenzene,acetone,2-butanone,3-methyl-2-butanone,tetrahydrofuran,ethyl acetate and dichloromethane) in the temperature range from 289.15 to 363.15 K were meas-ured using a static analytical method and correlated with an empirical equation.展开更多
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres...High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.展开更多
Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas...Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.展开更多
Heteroatom doping is an efficient approach to regulate the fluorescence properties of carbon dots.Using aminophenylboronic acid as the raw material,a combustion method was developed for the synthesis of boron,nitrogen...Heteroatom doping is an efficient approach to regulate the fluorescence properties of carbon dots.Using aminophenylboronic acid as the raw material,a combustion method was developed for the synthesis of boron,nitrogen-doped carbon dots(B,N-carbon dots).The B,N-carbon dots emitted green fluorescence and displayed high resistance to both photo bleaching and ionic strength.A facile fluorescence sensing approach for Cu^2+ was fabricated via static fluorescence quenching.Under optimal conditions,a rapid detection of Cu^2+ could be completed in 2 min with a linearity ranging from 1 μmol/L to 25 μmol/L and a detection limit of 0.3 μmol/L Furthermore,the proposed method showed potential applications for the detection of Cu^2+ in natural water samples.展开更多
Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be charact...Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be characterized as a stationary non-Gaussian field. This paper reviews several simulation algorithms related to the Spectral Representation Method (SRM) and the Static Transformation Method (STM). Polynomial and Exponential transformation functions (PSTM and ESTM) are discussed. Deficiencies in current algorithms, with respect to accuracy, stability and efficiency, are analyzed, and the algorithms are improved for better practical application. In order to verify the improved algorithm, wind pressure fields on a large-span roof are simulated and compared with wind tunnel data. The simulation results fit well with the wind tunnel data, and the algorithm accuracy, stability and efficiency are shown to be better than those of current algorithms.展开更多
In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both t...In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both the types of shape deviations and their values need to be taken into account in the designing process and play an important role during machine operation. They have a crucial effect on the value and scatter of maximum reduced von Mises stresses and contact stresses. Axisymmetric joints were examined, in which shafts in selected shape variants and in variable angular positions were associated with a non-deformable hole. The aspects of contact zone problems are presented using the example of numerical simulation of contact between an elliptical saddle-shaped shaft placed in a rigid, non-deformable hole in different angular positions. Occurrence of both variable relative stresses and contact stresses as well as shaft's axial shift and rotary movement resistance were demonstrated.展开更多
In the Da Hinggan Mountains,the safe and smooth operation of shallowly buried oil pipelines is threatened greatly by the frozeneheave damage derived from frozen soil.At present,a closed frozeneheave simulation test is...In the Da Hinggan Mountains,the safe and smooth operation of shallowly buried oil pipelines is threatened greatly by the frozeneheave damage derived from frozen soil.At present,a closed frozeneheave simulation test is often carried out in China,with water content and dry density of samples being assumed to be constant.However,an open frozeneheave test,all the factors of which change as the test goes on,can reflect the real frozeneheave damage more accurately.In this paper,the open frozeneheave test was carried out on five types frozen soil along the ChinaeRussia Crude Oil Pipeline to measure the frozeneheave factor and water content of each soil sample and accordingly analyze their relationship.Besides,its test results were compared with that of the closed frozeneheave test.Then,the normal frozeneheave force was measured by using the displacement limiting method,and this measurement was compared with the result of the static equilibrium test.Finally,a difference significance test was conducted.It is shown that the frozeneheave factor of the open test is higher than that of the closed test;the frozeneheave factor of fine grained soil has a significant effect on the frozeneheave factor of soils,and the frozeneheave factor increases as the capillary effect or the swabbing action of soil increases;the frozeneheave factor of coarse grained soil is mainly dependent on the mud content,and it is lower than that of fine grained soil;the value of frozeneheave force is in close relation with the test methods and the sample height;it is indicated that the open frozeneheave test is more applicable to the investigation on the frozeneheave of the foundation soils of pipelines in the Da Hinggan Mountains.It is concluded that the soils for the cushion and digging/packing layers of the pipelines in the permafrost regions shall be acted by the gravel or detritus with lower mud content,and waterproof and draining pipeline jetty shall be made from the clay soils with a higher plasticity.展开更多
A 12-bit intrinsic accuracy digital-to-analog converter integrated into standard digital 0.18μm CMOS technology is proposed. It is based on a current steering segmented 6+6 architecture and requires no calibration. ...A 12-bit intrinsic accuracy digital-to-analog converter integrated into standard digital 0.18μm CMOS technology is proposed. It is based on a current steering segmented 6+6 architecture and requires no calibration. By dividing one most significant bit unary source into 16 elements located in 16 separated regions of the array, the linear gradient errors and quadratic errors can be averaged and eliminated effectively. A novel static performance testing method is proposed. The measured differential nonlinearity and integral nonlinearity are 0.42 and 0.39 least significant bit, respectively. For 12-bit resolution, the converter reaches an update rate of 100 MS/s. The chip operates from a single 1.8 V voltage supply, and the core die area is 0.28 mm^2.展开更多
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
文摘The paper presents the principles of a method, which in two simple stages makes possible to carry out the statically calculation of values of forces acting in the fiat static indeterminate trusses. In each stage, it is considered the static determinate truss, scheme of which is obtained after remove the suitable number of members from the basic static indeterminate truss. The both intermediate statically determinate trusses are of the same clear span and they are loaded by forces of half values applied to the corresponding truss nodes. The method applies one of the typical procedures of calculation of the statically determinate trusses and then it is applied in an appropriate way the rule of superposition for obtaining the final values of forces acting in particular members of the basic truss. The values of forces calculated in this way are of a very close approximation to the force values determined in the special and complex ways being considered as the exact calculation methods. The proposed method can be useful mostly but not only for the initial structural design of such systems. The simplicity of the two-stage method justifies an assumption that it can be relatively easy and worthy to adjust to the requirements of the computer aided technology of statically calculation of the complex forms of trusses.
基金supported by the Thailand Research Fund(TRF)through the Royal Golden Jubilee Ph.D.Program(Grant No.PHD/0112/2553)the National Research University(NRU)initiative
文摘This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser(SCR) by using the finite element method. The critical top tension is the minimum top tension that can maintain the equilibrium of the SCR. If the top tension is smaller than the critical value, the equilibrium of the SCR does not exist. If the top tension is larger than the critical value, there are two possible equilibrium configurations. These two configurations exhibit the nonlinear large displacement. The configuration with the smaller displacement is stable, while the one with larger displacement is unstable. The numerical results show that the increases in the riser's vertical distances, horizontal offsets, riser's weights, internal flow velocities, and current velocities increase the critical top tensions of the SCR. In addition, the parametric studies are also performed in order to investigate the limit states for the analysis and design of the SCR.
文摘Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
文摘Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have opportunity to use geodesy result for some years for elastic parameters estimation. Static solution from elastic theory may be used for the interpretation of long term results. It presents static elastic parameter. The inverse problem for different types of vertical surface loading on one year period is calculated. Two cases of loading with maximal and minimal area are presented. Results are determined by space geodesy and leveling methods. Current relation between atmospheric pressure and vertical displacements was estimated at the center of Siberian Anti Cyclone with size varied from 2000 km to 3000 kin. Pressure-displacement coefficients (PDC) can be achieved by three years obser- vation (0.997 mm/mbar for NVSK GPS station). It is used for elastic module study of geology medium with maximum thickness up to 600 km. In the context of elastic model, the modulus of rigidity is estimated to be 113 GPa. Vast expanse of anti-cyclone may relate with rheology of crust and upper mantle. Smaller size of surface loading - local loading is seasonal variation of water reservoir. Annual vertical changes were obtained by leveling near the dam of the reservoir. PDC ratio was 1.15 mm/bar for these places. In elastic theory, the Young modulus E = 80 GPa (Poisson ratio = 0.25, the modulus of rigidity - 32 GPa) was calculated by sixteen years of leveling measurements. This result can effectively be represented for upper crust. Our results were checked by solution for coseismic displacement of Chyia- Altai earthquake (Sep. 27, 2003, M = 7.3). Coseismic results calculated by static modules agree with experimental coseismic GPS data at 10% level.
基金Supported by Science and Technology Innovation Plan for Outstanding Scholars in Henan Province(2014KJCXJCRC015)~~
文摘[Objective] This study aimed to study the adsorption performance of activated carbon prepared from corn stalks. [Methed] With granular activated carbon prepared from corn stalks as research object, adsorption performance simulation test equipment was set up to investigate the adsorption performance of the prepared activated carbon for methanol by static weight method. In addition, the effects of adsorption bed structure, activated carbon particle size in adsorption bed, addition amount of graphite powder in activated carbon and modified activated carbon on systematic adsorption performance were studied. [Result] Under conditions of same activated carbon and same adsorption temperature, the adsorption performance of new adsorption bed A (installed with finned diaphragm adsorbate tubes) was signifi- cantly better than that of unmodified adsorption bed B. Compared with adsorption bed B, adsorption bed A took 5 min shorter to reach the adsorption amount of 0.22 g/g. Under the same adsorption temperature, the adsorption performance of bed loaded with different-particle size activated carbon was significantly better than that loaded with same-particle size activated carbon. The bed loaded with different-particle size activated carbon took 16 min shorter to reach the adsorption capacity of 0.22 g/g compared with the bed loaded with same-particle size activated carbon. Adding proper amount of graphite powder in activated carbon could enhance the thermal conductivity and strengthen the adsorption properties. The optimum addition amount of graphite powder was 20% of the total amount of activated carbon. Com- pared with that of the control, the adsorption performance of activated carbon soaked by weak acidic solution was significantly improved. It took 3 min shorter to reach 87.1% of the equilibrium adsorption amount. [Conclusion] This study will provide reference for optimizing structural design of adsorption bed and adsorption refrigeration system.
基金supported by the National Natural Science Foundation of China (Grant No.50309009)the National High Technology Research and Development Program of China(863 Program,Grant No.2004AA616100)
文摘Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.
文摘Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visible(UV-Vis) spectra. Its thermal stability was also examined by thermogravimetric analysis(TGA) and a differential scanning calorimeter(DSC) . The mole fraction solubilities of [C3SO3HMIM][HSO4]) in 12 selected solvents(n-pentane,n-hexane,n-heptane,benzene,toluene,ethylbenzene,acetone,2-butanone,3-methyl-2-butanone,tetrahydrofuran,ethyl acetate and dichloromethane) in the temperature range from 289.15 to 363.15 K were meas-ured using a static analytical method and correlated with an empirical equation.
基金supported by the National Key Basic Research Program of China (2011CB013104)National Natural Science Foundation of China (U1134004)+2 种基金Guangdong Provincial Natural Science Foundation (2015A030312008)Science and Technology Program of Guangzhou (201510010281)Guangdong Provincial Science and Technology Plan (2013B010402014)
文摘High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.
基金Under the auspices of National Natural Science Foundation of China(No.41101080)Shandong Natural Science Foundation of China(No.ZR2014DQ028,ZR2015DM004)
文摘Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.
基金financially supported by the National Natural Science Foundation of China(No.21375112)the Marine hightech industry development projects of Fujian Province(No.2015-19)
文摘Heteroatom doping is an efficient approach to regulate the fluorescence properties of carbon dots.Using aminophenylboronic acid as the raw material,a combustion method was developed for the synthesis of boron,nitrogen-doped carbon dots(B,N-carbon dots).The B,N-carbon dots emitted green fluorescence and displayed high resistance to both photo bleaching and ionic strength.A facile fluorescence sensing approach for Cu^2+ was fabricated via static fluorescence quenching.Under optimal conditions,a rapid detection of Cu^2+ could be completed in 2 min with a linearity ranging from 1 μmol/L to 25 μmol/L and a detection limit of 0.3 μmol/L Furthermore,the proposed method showed potential applications for the detection of Cu^2+ in natural water samples.
基金National Natural Science Foundation of China under Grant Nos.51278160,51478155,51378147
文摘Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be characterized as a stationary non-Gaussian field. This paper reviews several simulation algorithms related to the Spectral Representation Method (SRM) and the Static Transformation Method (STM). Polynomial and Exponential transformation functions (PSTM and ESTM) are discussed. Deficiencies in current algorithms, with respect to accuracy, stability and efficiency, are analyzed, and the algorithms are improved for better practical application. In order to verify the improved algorithm, wind pressure fields on a large-span roof are simulated and compared with wind tunnel data. The simulation results fit well with the wind tunnel data, and the algorithm accuracy, stability and efficiency are shown to be better than those of current algorithms.
文摘In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both the types of shape deviations and their values need to be taken into account in the designing process and play an important role during machine operation. They have a crucial effect on the value and scatter of maximum reduced von Mises stresses and contact stresses. Axisymmetric joints were examined, in which shafts in selected shape variants and in variable angular positions were associated with a non-deformable hole. The aspects of contact zone problems are presented using the example of numerical simulation of contact between an elliptical saddle-shaped shaft placed in a rigid, non-deformable hole in different angular positions. Occurrence of both variable relative stresses and contact stresses as well as shaft's axial shift and rotary movement resistance were demonstrated.
基金Project supported by the National Natural Science Foundation Project“Research on the Frozeneheave Mechanism of Marsh Turfy Soil in Seasonally Frozen Area”(No.41502272)Seed Fund Project of Changchun Institute of Technology,“Research on the FrozeneThaw Cycle Effect of Shallowly Buried Pipelines in the Permafrost Zone of Da Hinggan Mountains”(No.320160017).
文摘In the Da Hinggan Mountains,the safe and smooth operation of shallowly buried oil pipelines is threatened greatly by the frozeneheave damage derived from frozen soil.At present,a closed frozeneheave simulation test is often carried out in China,with water content and dry density of samples being assumed to be constant.However,an open frozeneheave test,all the factors of which change as the test goes on,can reflect the real frozeneheave damage more accurately.In this paper,the open frozeneheave test was carried out on five types frozen soil along the ChinaeRussia Crude Oil Pipeline to measure the frozeneheave factor and water content of each soil sample and accordingly analyze their relationship.Besides,its test results were compared with that of the closed frozeneheave test.Then,the normal frozeneheave force was measured by using the displacement limiting method,and this measurement was compared with the result of the static equilibrium test.Finally,a difference significance test was conducted.It is shown that the frozeneheave factor of the open test is higher than that of the closed test;the frozeneheave factor of fine grained soil has a significant effect on the frozeneheave factor of soils,and the frozeneheave factor increases as the capillary effect or the swabbing action of soil increases;the frozeneheave factor of coarse grained soil is mainly dependent on the mud content,and it is lower than that of fine grained soil;the value of frozeneheave force is in close relation with the test methods and the sample height;it is indicated that the open frozeneheave test is more applicable to the investigation on the frozeneheave of the foundation soils of pipelines in the Da Hinggan Mountains.It is concluded that the soils for the cushion and digging/packing layers of the pipelines in the permafrost regions shall be acted by the gravel or detritus with lower mud content,and waterproof and draining pipeline jetty shall be made from the clay soils with a higher plasticity.
基金Project supported by the National High Technology Research and Development Program of China(No.2008AA010700)
文摘A 12-bit intrinsic accuracy digital-to-analog converter integrated into standard digital 0.18μm CMOS technology is proposed. It is based on a current steering segmented 6+6 architecture and requires no calibration. By dividing one most significant bit unary source into 16 elements located in 16 separated regions of the array, the linear gradient errors and quadratic errors can be averaged and eliminated effectively. A novel static performance testing method is proposed. The measured differential nonlinearity and integral nonlinearity are 0.42 and 0.39 least significant bit, respectively. For 12-bit resolution, the converter reaches an update rate of 100 MS/s. The chip operates from a single 1.8 V voltage supply, and the core die area is 0.28 mm^2.