The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as...The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as quantum anomalous Hall effect and the axion insulator.However,the surface state gap,which is the prerequisite for the observation of these states,remains elusive.Here by molecular beam epitaxy,we obtain two types of MnBi_(4)Te_(7)films with the exclusive Bi_(2)Te_(3)(BT)or MnBi_(2)Te_(4)(MBT)terminations.By scanning tunneling spectroscopy,the mass terms in the surface states are identified on both surface terminations.Experimental results reveal the existence of a hybridization gap of approximately 23 meV in surface states on the BT termination.This gap comes from the hybridization between the surface states and the spin-split states in the adjacent MBT layer.On the MBT termination,an exchange mass term of about 28±2 meV in surface states is identified by taking magnetic-field-dependent Landau level spectra as well as theoretical simulations.In addition,the mass term varies with the field in the film with a heavy BiMn doping level in the Mn layers.These findings demonstrate the existence of mass terms in surface states on both types of terminations in our epitaxial MnBi_(4)Te_(7)films investigated by local probes.展开更多
Exploring the quantum advantages of various non-classical quantum states in noisy environments is a central subject in quantum sensing.Here we provide a complete picture for the frequency estimation precision of three...Exploring the quantum advantages of various non-classical quantum states in noisy environments is a central subject in quantum sensing.Here we provide a complete picture for the frequency estimation precision of three important states(the Greenberger-Horne-Zeilinger(GHZ)state,the maximal spin squeezed state,and the spin coherent state)of a spin-S under both individual dephasing and collective dephasing by general Gaussian noise,ranging from the Markovian limit to the extreme non-Markovian limit.Whether or not the noise is Markovian,the spin coherent state is always worse than the classical scheme under collective dephasing although it is equivalent to the classical scheme under individual dephasing.Moreover,the maximal spin squeezed state always give the best sensing precision(and outperforms the widely studied GHZ state)in all cases.This establishes the general advantage of the spin squeezed state for noisy frequency estimation in many quantum sensing platforms.展开更多
This letter demonstrates an experimental approach to measuring the angular-momentum-resolved population of excited states in laser-produced argon ions.By measuring the spectra of free induction decay emissions corresp...This letter demonstrates an experimental approach to measuring the angular-momentum-resolved population of excited states in laser-produced argon ions.By measuring the spectra of free induction decay emissions corresponding to the resonant transitions between Rydberg states,the relative population of the Rydberg states is obtained with known Einstein A-coefficients.This study deepens the mechanistic understanding of coherent dynamics in laser-driven ionic excited states,and establishes experimental benchmarks essential for validating and refining advanced quantum kinetic models in strong-field physics.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
In order to address the widespread data shortage problem in battery research,this paper proposes a generative adversarial network model that combines it with deep convolutional networks,the Wasserstein distance,and th...In order to address the widespread data shortage problem in battery research,this paper proposes a generative adversarial network model that combines it with deep convolutional networks,the Wasserstein distance,and the gradient penalty to achieve data augmentation.To lower the threshold for implementing the proposed method,transfer learning is further introduced.The W-DC-GAN-GP-TL framework is thereby formed.This framework is evaluated on 3 different publicly available datasets to judge the quality of generated data.Through visual comparisons and the examination of two visualization methods(probability density function(PDF)and principal component analysis(PCA)),it is demonstrated that the generated data is hard to distinguish from the real data.The application of generated data for training a battery state model using transfer learning is further evaluated.Specifically,Bi-GRU-based and Transformer-based methods are implemented on 2 separate datasets for estimating state of health(SOH)and state of charge(SOC),respectively.The results indicate that the proposed framework demonstrates satisfactory performance in different scenarios:for the data replacement scenario,where real data are removed and replaced with generated data,the state estimator accuracy decreases only slightly;for the data enhancement scenario,the estimator accuracy is further improved.The estimation accuracy of SOH and SOC is as low as 0.69%and 0.58%root mean square error(RMSE)after applying the proposed framework.This framework provides a reliable method for enriching battery measurement data.It is a generalized framework capable of generating a variety of time series data.展开更多
Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a...Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.展开更多
The fractional shortcut to adiabaticity(f-STA)for the production of quantum superposition states is proposed firstly via a three-level system with aΛ-type linkage pattern and a four-level system with a tripod structu...The fractional shortcut to adiabaticity(f-STA)for the production of quantum superposition states is proposed firstly via a three-level system with aΛ-type linkage pattern and a four-level system with a tripod structure.The fast and robust production of the coherent superposition states is studied by comparing the populations for the f-STA and the fractional stimulated Raman adiabatic passage(f-STIRAP).The states with equal proportions can be produced by fixing the controllable parameters of the driving pulses at the final moment of the whole process.The effects of the pulse intensity and the time delay of the pulses on the production process are discussed by monitoring the populations on all of the quantum states.In particular,the spontaneous emission arising from the intermediate state is investigated by the quantum master equation.The result reveals that the f-STA exhibits superior advantages over the f-STIRAP in producing the superposition states.展开更多
We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring...We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.展开更多
We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other ...We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other countries will require the rapid construction of communities capable of supporting them, their families, businesses and farms. However, different political-economic conditions are found across the areas which can serve as locations for these Climate Change Haven Communities. We develop funding and construction strategies for the United States (free-market capitalism), France and Spain (European Union supported economies), and Taiwan region (state-directed economy). The proposals for the Taiwan region should also be applicable to the rest of China.展开更多
The ultrafast excitation dynamics of atoms and molecules exposed to circularly polarized two-color(CPTC)laser fields constitute a fascinating topic in attosecond science. Although extensive research has established th...The ultrafast excitation dynamics of atoms and molecules exposed to circularly polarized two-color(CPTC)laser fields constitute a fascinating topic in attosecond science. Although extensive research has established the relationship between the Rydberg state excitation(RSE) yields and the CPTC field parameters, such as field amplitude ratios and helicity of two components, the role of the relative phase(φ) in modulating RSE efficiency remains unclear. In this work, we theoretically investigate the φ dependence of RSE and ionization yields in the co-rotating and counter-rotating circularly polarized two-color(CPTC) few-cycle laser fields by a semiclassical model. We find that, in co-rotating CPTC fields, both RSE and ionization yields display pronounced oscillations as a function of φ and these oscillations are significantly suppressed in the counter-rotating configuration, particularly for ionization yields. Moreover, the ratio of RSE to ionization yields exhibits an out-of-phase oscillatory pattern between low-and high-intensity regimes. These results can be comprehended by the unique feature of φ dependence of CPTC few-cycle fields, based on our semiclassical analysis. Our results demonstrate that phase-controlled CPTC fields offer a versatile tool for steering ultrafast ionization and RSE dynamics of atoms and molecules.展开更多
Recent developments suggest that the race to power electric vehicles(EV)withsolid-statebatteries(SSB)hasgainedmomentum.In January 2024,Toyota Motor Corporation(Toyota City,Japan)confirmed its previously stated plans t...Recent developments suggest that the race to power electric vehicles(EV)withsolid-statebatteries(SSB)hasgainedmomentum.In January 2024,Toyota Motor Corporation(Toyota City,Japan)confirmed its previously stated plans to start producing SSB EV in the2027-2028timeframe[1].InMay2024,itemergedthattheChi-nesegovernmentplanstoinvestmorethansixbillionCNY(830mil-lion USD)in projects intended to speed up SSB development[2].In June 2024,the automaker Nio(Shanghai,China)began supplying customers with EVs containing“semi-solid-state”batteries-a hybrid technology that could serve as a stepping stone to fully solid versions[3].In September 2024,SAIC Motor(Shanghai,China),China’s largest automobile manufacturer,announced that it would deliver its first SSB-powered vehicles in 2025[4].展开更多
We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrief...We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrieffer-Heeger chains.The formation of topological Floquet BICs can be adjusted only by tuning the driving amplitude or frequency,regardless of whether the static system has BICs or not.The interchain bias can only change the localization property of topological Floquet BICs,and a bigger bias can lead to transforming topological Floquet BICs into bound states out of the continuum(BOCs).But it does not change the topological properties of these topological Floquet states.Based on the repulsion effect of edge states,we propose to detect occurrence of topological Floquet BICs and transition point between topological Floquet BICs and BOCs using quantum walk.Our work provided a convenient and realistic approach for the experimental realization and manipulation of BICs in a single-particle quantum system.展开更多
Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opport...Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.展开更多
The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned...The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.展开更多
Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological...Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.展开更多
This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performe...This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.展开更多
A commentary on an anode-free cell design with electrochemically stable sodium borohydride solid electrolyte and pelletized aluminium current collector for sodium all-solid-state batteries is presented.First,the viabl...A commentary on an anode-free cell design with electrochemically stable sodium borohydride solid electrolyte and pelletized aluminium current collector for sodium all-solid-state batteries is presented.First,the viable strategies for implementing anode-free configuration utilizing solid-state electrolytes are briefly reviewed.Then,the remarkable work of Meng et al.on designing an anode-free sodium all-solid-state battery is elucidated.Finally,the significance of Meng’s work is discussed.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
In both Traditional Chinese Medicine(TCM)and modern medicine,they agree that the integrity and healthy structure of the vascular endothelium are essential for normal hemodynamics.Damage to the vascular endothelium can...In both Traditional Chinese Medicine(TCM)and modern medicine,they agree that the integrity and healthy structure of the vascular endothelium are essential for normal hemodynamics.Damage to the vascular endothelium can quickly activate the extrinsic coagulation pathway by triggering the tissue factor(TF)and lead to coagulation.This damage,along with a loss of anticoagulant properties through antithrombinⅢ(ATⅢ),TF pathway inhibitors,and the protein C system,can result in a hypercoagulable state and even thrombosis.Hypercoagulability is not only a common feature of many cancers but also an important factor promoting tumor development and metastasis,which corresponds to the TCM theory of“blood stasis leading to tumors.”The pharmacological effects of heparin and aspirin have similarities with TCM's“activating blood circulation and removing blood stasis”theory in improving blood circulation,treating related diseases,and their anti-inflammatory effects.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403102)the National Natural Science Foundation of China(Grant Nos.12474478,92065102,and 61804056).
文摘The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as quantum anomalous Hall effect and the axion insulator.However,the surface state gap,which is the prerequisite for the observation of these states,remains elusive.Here by molecular beam epitaxy,we obtain two types of MnBi_(4)Te_(7)films with the exclusive Bi_(2)Te_(3)(BT)or MnBi_(2)Te_(4)(MBT)terminations.By scanning tunneling spectroscopy,the mass terms in the surface states are identified on both surface terminations.Experimental results reveal the existence of a hybridization gap of approximately 23 meV in surface states on the BT termination.This gap comes from the hybridization between the surface states and the spin-split states in the adjacent MBT layer.On the MBT termination,an exchange mass term of about 28±2 meV in surface states is identified by taking magnetic-field-dependent Landau level spectra as well as theoretical simulations.In addition,the mass term varies with the field in the film with a heavy BiMn doping level in the Mn layers.These findings demonstrate the existence of mass terms in surface states on both types of terminations in our epitaxial MnBi_(4)Te_(7)films investigated by local probes.
基金supported by the National Natural Science Foundation of China(NSFC)Grant No.12274019the NSAF grant in NSFC with Grant No.U2230402。
文摘Exploring the quantum advantages of various non-classical quantum states in noisy environments is a central subject in quantum sensing.Here we provide a complete picture for the frequency estimation precision of three important states(the Greenberger-Horne-Zeilinger(GHZ)state,the maximal spin squeezed state,and the spin coherent state)of a spin-S under both individual dephasing and collective dephasing by general Gaussian noise,ranging from the Markovian limit to the extreme non-Markovian limit.Whether or not the noise is Markovian,the spin coherent state is always worse than the classical scheme under collective dephasing although it is equivalent to the classical scheme under individual dephasing.Moreover,the maximal spin squeezed state always give the best sensing precision(and outperforms the widely studied GHZ state)in all cases.This establishes the general advantage of the spin squeezed state for noisy frequency estimation in many quantum sensing platforms.
基金supported by the National Natural Science Foundation of China(Grant Nos.12234020,12474281,12450403,and 12274461)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1193)。
文摘This letter demonstrates an experimental approach to measuring the angular-momentum-resolved population of excited states in laser-produced argon ions.By measuring the spectra of free induction decay emissions corresponding to the resonant transitions between Rydberg states,the relative population of the Rydberg states is obtained with known Einstein A-coefficients.This study deepens the mechanistic understanding of coherent dynamics in laser-driven ionic excited states,and establishes experimental benchmarks essential for validating and refining advanced quantum kinetic models in strong-field physics.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
基金funded by the Bavarian State Ministry of Science,Research and Art(Grant number:H.2-F1116.WE/52/2)。
文摘In order to address the widespread data shortage problem in battery research,this paper proposes a generative adversarial network model that combines it with deep convolutional networks,the Wasserstein distance,and the gradient penalty to achieve data augmentation.To lower the threshold for implementing the proposed method,transfer learning is further introduced.The W-DC-GAN-GP-TL framework is thereby formed.This framework is evaluated on 3 different publicly available datasets to judge the quality of generated data.Through visual comparisons and the examination of two visualization methods(probability density function(PDF)and principal component analysis(PCA)),it is demonstrated that the generated data is hard to distinguish from the real data.The application of generated data for training a battery state model using transfer learning is further evaluated.Specifically,Bi-GRU-based and Transformer-based methods are implemented on 2 separate datasets for estimating state of health(SOH)and state of charge(SOC),respectively.The results indicate that the proposed framework demonstrates satisfactory performance in different scenarios:for the data replacement scenario,where real data are removed and replaced with generated data,the state estimator accuracy decreases only slightly;for the data enhancement scenario,the estimator accuracy is further improved.The estimation accuracy of SOH and SOC is as low as 0.69%and 0.58%root mean square error(RMSE)after applying the proposed framework.This framework provides a reliable method for enriching battery measurement data.It is a generalized framework capable of generating a variety of time series data.
基金supported in part by the National Natural Science Foundation of China(61873106,62303109)Start-Up Research Fund of Southeast University(RF1028623002)Shenzhen Science and Technology Program(JCYJ20230807114609019)
文摘Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.
基金supported by the NSF of China(Grant No.11405100)the Natural Science Basic Research Program in Shaanxi Province of China(Grant Nos.2020JM-507 and 2019JM-332)。
文摘The fractional shortcut to adiabaticity(f-STA)for the production of quantum superposition states is proposed firstly via a three-level system with aΛ-type linkage pattern and a four-level system with a tripod structure.The fast and robust production of the coherent superposition states is studied by comparing the populations for the f-STA and the fractional stimulated Raman adiabatic passage(f-STIRAP).The states with equal proportions can be produced by fixing the controllable parameters of the driving pulses at the final moment of the whole process.The effects of the pulse intensity and the time delay of the pulses on the production process are discussed by monitoring the populations on all of the quantum states.In particular,the spontaneous emission arising from the intermediate state is investigated by the quantum master equation.The result reveals that the f-STA exhibits superior advantages over the f-STIRAP in producing the superposition states.
文摘We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.
文摘We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other countries will require the rapid construction of communities capable of supporting them, their families, businesses and farms. However, different political-economic conditions are found across the areas which can serve as locations for these Climate Change Haven Communities. We develop funding and construction strategies for the United States (free-market capitalism), France and Spain (European Union supported economies), and Taiwan region (state-directed economy). The proposals for the Taiwan region should also be applicable to the rest of China.
基金supported by the National Natural Science Foundation of China (Nos. 12121004, 12274273, and 12450402)the Science and Technology Department of Hubei Province (No. 2020CFA029)+1 种基金CAS Project for Young Scientists in Basic Research (No. YSBR-091)the Youth Innovation Promotion Association CAS (No. 2021328)。
文摘The ultrafast excitation dynamics of atoms and molecules exposed to circularly polarized two-color(CPTC)laser fields constitute a fascinating topic in attosecond science. Although extensive research has established the relationship between the Rydberg state excitation(RSE) yields and the CPTC field parameters, such as field amplitude ratios and helicity of two components, the role of the relative phase(φ) in modulating RSE efficiency remains unclear. In this work, we theoretically investigate the φ dependence of RSE and ionization yields in the co-rotating and counter-rotating circularly polarized two-color(CPTC) few-cycle laser fields by a semiclassical model. We find that, in co-rotating CPTC fields, both RSE and ionization yields display pronounced oscillations as a function of φ and these oscillations are significantly suppressed in the counter-rotating configuration, particularly for ionization yields. Moreover, the ratio of RSE to ionization yields exhibits an out-of-phase oscillatory pattern between low-and high-intensity regimes. These results can be comprehended by the unique feature of φ dependence of CPTC few-cycle fields, based on our semiclassical analysis. Our results demonstrate that phase-controlled CPTC fields offer a versatile tool for steering ultrafast ionization and RSE dynamics of atoms and molecules.
文摘Recent developments suggest that the race to power electric vehicles(EV)withsolid-statebatteries(SSB)hasgainedmomentum.In January 2024,Toyota Motor Corporation(Toyota City,Japan)confirmed its previously stated plans to start producing SSB EV in the2027-2028timeframe[1].InMay2024,itemergedthattheChi-nesegovernmentplanstoinvestmorethansixbillionCNY(830mil-lion USD)in projects intended to speed up SSB development[2].In June 2024,the automaker Nio(Shanghai,China)began supplying customers with EVs containing“semi-solid-state”batteries-a hybrid technology that could serve as a stepping stone to fully solid versions[3].In September 2024,SAIC Motor(Shanghai,China),China’s largest automobile manufacturer,announced that it would deliver its first SSB-powered vehicles in 2025[4].
基金supported by the National Natural Science Foundation of China(Grant Nos.12175315 and 12205385)。
文摘We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrieffer-Heeger chains.The formation of topological Floquet BICs can be adjusted only by tuning the driving amplitude or frequency,regardless of whether the static system has BICs or not.The interchain bias can only change the localization property of topological Floquet BICs,and a bigger bias can lead to transforming topological Floquet BICs into bound states out of the continuum(BOCs).But it does not change the topological properties of these topological Floquet states.Based on the repulsion effect of edge states,we propose to detect occurrence of topological Floquet BICs and transition point between topological Floquet BICs and BOCs using quantum walk.Our work provided a convenient and realistic approach for the experimental realization and manipulation of BICs in a single-particle quantum system.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA140850,2022YFA1403601,and 2023YFC2410501)the National Natural Science Foundation of China(Grants Nos.12241402,12474059,12274203,12374113,and 12274204)。
文摘Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12347104,U24A2017,12461160276,and 12175075)the National Key Research and Development Program of China(Grant No.2023YFC2205802)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20243060 and BK20233001)in part by the State Key Laboratory of Advanced Optical Communication Systems and Networks,China。
文摘The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406702)the Innovation Program for Quantum Science and Technology 2021ZD0302005+1 种基金the XPLORER Prizepartly supported by the Start-up Research Fund of Southeast University(RF1028624190)。
文摘Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.
基金support from the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grant(Grant No.5808)received in 2019 for his research programsThe third author appreciates the funding from the National Natural Science Foundation of China(Grant No.52378365)Hubei Key Research&Development Program(Grant No.2023BCB112).
文摘This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.
基金grateful for support from the National Natural Science Foundation of China(Nos.52472247,52172229,21401145)Fundamental Research Funds for the Central Universities(No.104972024KFYjc0079).
文摘A commentary on an anode-free cell design with electrochemically stable sodium borohydride solid electrolyte and pelletized aluminium current collector for sodium all-solid-state batteries is presented.First,the viable strategies for implementing anode-free configuration utilizing solid-state electrolytes are briefly reviewed.Then,the remarkable work of Meng et al.on designing an anode-free sodium all-solid-state battery is elucidated.Finally,the significance of Meng’s work is discussed.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金supported by the Guizhou Provincial Basic Research Program(Natural Science)Youth Guidance Project{Qian Kehe Foundation-[2024]Youth 307}。
文摘In both Traditional Chinese Medicine(TCM)and modern medicine,they agree that the integrity and healthy structure of the vascular endothelium are essential for normal hemodynamics.Damage to the vascular endothelium can quickly activate the extrinsic coagulation pathway by triggering the tissue factor(TF)and lead to coagulation.This damage,along with a loss of anticoagulant properties through antithrombinⅢ(ATⅢ),TF pathway inhibitors,and the protein C system,can result in a hypercoagulable state and even thrombosis.Hypercoagulability is not only a common feature of many cancers but also an important factor promoting tumor development and metastasis,which corresponds to the TCM theory of“blood stasis leading to tumors.”The pharmacological effects of heparin and aspirin have similarities with TCM's“activating blood circulation and removing blood stasis”theory in improving blood circulation,treating related diseases,and their anti-inflammatory effects.