Health information spreads rapidly,which can effectively control epidemics.However,the swift dissemination of information also has potential negative impacts,which increasingly attracts attention.Message fatigue refer...Health information spreads rapidly,which can effectively control epidemics.However,the swift dissemination of information also has potential negative impacts,which increasingly attracts attention.Message fatigue refers to the psychological response characterized by feelings of boredom and anxiety that occur after receiving an excessive amount of similar information.This phenomenon can alter individual behaviors related to epidemic prevention.Additionally,recent studies indicate that pairwise interactions alone are insufficient to describe complex social transmission processes,and higher-order structures representing group interactions are crucial.To address this,we develop a novel epidemic model that investigates the interactions between information,behavioral responses,and epidemics.Our model incorporates the impact of message fatigue on the entire transmission system.The information layer is modeled using a static simplicial network to capture group interactions,while the disease layer uses a time-varying network based on activity-driven model with attractiveness to represent the self-protection behaviors of susceptible individuals and self-isolation behaviors of infected individuals.We theoretically describe the co-evolution equations using the microscopic Markov chain approach(MMCA)and get the epidemic threshold.Experimental results show that while the negative impact of message fatigue on epidemic transmission is limited,it significantly weakens the group interactions depicted by higher-order structures.Individual behavioral responses strongly inhibit the epidemic.Our simulations using the Monte Carlo(MC)method demonstrate that greater intensity in these responses leads to clustering of susceptible individuals in the disease layer.Finally,we apply the proposed model to real networks to verify its reliability.In summary,our research results enhance the understanding of the information-epidemic coupling dynamics,and we expect to provide valuable guidance for managing future emerging epidemics.展开更多
Objective:To predict the distribution of dengue vector Aedes(Ae.)albopictus and identify high-risk areas for dengue fever transmission.Methods:Data on Ae.albopictus occurrences were collected from electronic databases...Objective:To predict the distribution of dengue vector Aedes(Ae.)albopictus and identify high-risk areas for dengue fever transmission.Methods:Data on Ae.albopictus occurrences were collected from electronic databases.Ensemble models were developed to assess the impacts of climate,vegetation,and human activity on Ae.albopictus.The optimal ensemble model was then used to identify the distribution of suitable areas for Ae.albopictus.Results:After removing duplicate sites and retaining only one location per 100 m×100 m grid,189 Ae.albopictus breeding sites were identified.The optimal ensemble model revealed that Ae.albopictus exhibited higher breeding suitability in Shanghai under specific conditions:a normalized difference vegetation index of 0.1 to 0.6,maximum precipitation in the warmest month ranging from 400 mm to 470 mm,maximum temperature in the warmest month between 30.0℃and 31.0℃,and proximity to waterways within 0.5 km.The most suitable habitats for Ae.albopictus were primarily concentrated in Shanghai’s central urban areas and scattered across the inner suburban districts.Conclusions:The high-risk areas of Ae.albopictus are widely distributed throughout the central urban area and scattered across the inner suburban district of Shanghai,creating conditions conducive to the outbreak of dengue fever.It is essential to enhance targeted control measures for Ae.albopictus in the identified risk areas.展开更多
Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt pro...Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.展开更多
Botryosphaeria laricina(larch shoot blight)was first identified in 1973 in Jilin Province,China.The disease spread rapidly and caused considerable damage because its pathogenesis was unknown at the time and there were...Botryosphaeria laricina(larch shoot blight)was first identified in 1973 in Jilin Province,China.The disease spread rapidly and caused considerable damage because its pathogenesis was unknown at the time and there were no effective controls or quarantine methods.At present,it shows a spreading trend,but most research can only conduct physiological analyses within a relatively short period,combining individual influencing factors.Nevertheless,methods such as neural network models,ensemble learning algorithms,and Markov models are used in pest and disease prediction and forecasting.However,there may be fitting issues or inherent limitations associated with these methods.This study obtained B.laricina data at the county level from 2003 to 2021.The dataset was augmented using the SMOTE algorithm,and then algorithms such as XGBoost were used to select the significant features from a combined set of 12 features.A new stacking fusion model has been proposed to predict the status of B.laricina.The model is based on random forest,gradient boosted decision tree,CatBoost and logistic regression algorithms.The accuracy,recall,specificity,precision,F_(1) value and AUC of the model reached 90.9%,91.6%,90.4%,88.8%,90.2%and 96.2%.The results provide evidence of the strong performance and stability of the model.B.laricina is mainly found in the northeast and this study indicates that it is spreading northwest.Reasonable means should be used promptly to prevent further damage and spread.展开更多
The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There i...The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.展开更多
Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered dri...Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.展开更多
BACKGROUND Colorectal laterally spreading tumors(LSTs)are best treated with endoscopic submucosal dissection or endoscopic mucosal resection.AIM To analyze the clinicopathological and endoscopic profiles of colorectal...BACKGROUND Colorectal laterally spreading tumors(LSTs)are best treated with endoscopic submucosal dissection or endoscopic mucosal resection.AIM To analyze the clinicopathological and endoscopic profiles of colorectal LSTs,determine predictive factors for high-grade dysplasia(HGD)/carcinoma(CA),submucosal invasion,and complications.METHODS We retrospectively assessed the endoscopic and histological characteristics of 375 colorectal LSTs at our hospital between January 2016 and December 2023.We performed univariate and multivariate analysis to identify risk factors associated with HGD/CA,submucosal invasion and complications.RESULTS The numbers of granular(LST-G)and non-granular LST(LST-NG)were 260 and 115,respectively.The rates of low-grade dysplasia and HGD/CA were 60.3%and 39.7%,respectively.Multivariate analysis indicated that a tumor size≥30 mm[odds ratio(OR)=1.934,P=0.032],LST granular nodular mixed type(OR=2.100,P=0.005),and LST non-granular pseudo depressed type(NG-PD)(OR=3.016,P=0.015)were independent risk factors significantly associated with higher odds of HGD/CA.NG-PD(OR=6.506,P=0.001),tumor size(20-29 mm)(OR=2.631,P=0.036)and tumor size≥30 mm(OR=3.449,P=0.016)were associated with increased odds of submucosal invasion.Tumor size≥30 mm(OR=4.888,P=0.003)was a particularly important predictor of complications.A nomogram model demonstrated a satisfactory fit,with an area under the receiver operating characteristic curve of 0.716(95%confidence interval:0.653-0.780),indicating strong predictive performance.CONCLUSION The novel nomogram incorporating tumor size,location,and morphology predicted HGD/CA during endoscopic resection for LSTs.NG-PD lesions larger than 20 mm were more likely to invade the submucosa.Tumor size≥30 mm was an important predictor of complications.展开更多
This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward...This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward spreading speeds for the infective individuals, which can be used to estimate how fast the disease spreads. To overcome the difficulty arising from the lack of comparison principle for such time-space periodic nonmonotone systems, our proof is mainly based on constructing a series of scalar time-space periodic equations, establishing the spreading speeds for such auxiliary equations and using comparison methods. It may be the first work to study the spreading speed for time-space periodic non-monotone systems.展开更多
The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(...The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.展开更多
A graph G possesses Hamiltonian s-properties when G is Hamilton-connected if s=1,Hamiltonian if s=0,and traceable if s=-1.Let S_A(G)=λ_n(G)-λ_1(G)and S_L(G)=μ_n(G)-μ_2(G)be the spread and the Laplacian spread of G...A graph G possesses Hamiltonian s-properties when G is Hamilton-connected if s=1,Hamiltonian if s=0,and traceable if s=-1.Let S_A(G)=λ_n(G)-λ_1(G)and S_L(G)=μ_n(G)-μ_2(G)be the spread and the Laplacian spread of G,respectively,whereλ_n(G)andλ_1(G)are the largest and smallest eigenvalues of G,andμ_n(G)andμ_2(G)are the largest and second smallest Laplacian eigenvalues of G,respectively.In this paper,we shall present two sufficient conditions involving S_A(G)and S_L(G)for a k-connected graph to possess Hamiltonian s-properties,respectively.We also derive a sufficient condition on the Laplacian eigenratio μ2(G)/μ(G) for a k-connected graph to possess Hamiltonian s-properties.展开更多
Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few wo...Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.展开更多
There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of ...There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.展开更多
In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psycho...In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psychological stress and their emotions will rapidly spread to others.This paper establishes the attack-escape evacuation simulation model(AEES-SFM),based on the social force model,to consider emotion spreading under attack.In this model,(1)the attack-escape driving force is considered for the interaction between an attacker and evacuees and(2)emotion spreading among the evacuees is considered to modify the value of the psychological force.To validate the simulation,several experiments were carried out at a university in China.Comparing the simulation and experimental results,it is found that the simulation results are similar to the experimental results when considering emotion spreading.Therefore,the AEES-SFM is proved to be effective.By comparing the results of the evacuation simulation without emotion spreading,the emotion spreading model reduces the evacuation time and the number of casualties by about 30%,which is closer to the real experimental results.The results are still applicable in the case of a 40-person evacuation.This paper provides theoretical support and practical guidance for campus response to violent attacks.展开更多
The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the wid...The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.展开更多
To address the challenges of video copyright protection and ensure the perfect recovery of original video,we propose a dual-domain watermarking scheme for digital video,inspired by Robust Reversible Watermarking(RRW)t...To address the challenges of video copyright protection and ensure the perfect recovery of original video,we propose a dual-domain watermarking scheme for digital video,inspired by Robust Reversible Watermarking(RRW)technology used in digital images.Our approach introduces a parameter optimization strategy that incre-mentally adjusts scheme parameters through attack simulation fitting,allowing for adaptive tuning of experimental parameters.In this scheme,the low-frequency Polar Harmonic Transform(PHT)moment is utilized as the embedding domain for robust watermarking,enhancing stability against simulation attacks while implementing the parameter optimization strategy.Through extensive attack simulations across various digital videos,we identify the optimal low-frequency PHT moment using adaptive normalization.Subsequently,the embedding parameters for robust watermarking are adaptively adjusted to maximize robustness.To address computational efficiency and practical requirements,the unnormalized high-frequency PHT moment is selected as the embedding domain for reversible watermarking.We optimize the traditional single-stage extended transform dithering modulation(STDM)to facilitate multi-stage embedding in the dual-domain watermarking process.In practice,the video embedded with a robust watermark serves as the candidate video.This candidate video undergoes simulation according to the parameter optimization strategy to balance robustness and embedding capacity,with adaptive determination of embedding strength.The reversible watermarking is formed by combining errors and other information,utilizing recursive coding technology to ensure reversibility without attacks.Comprehensive analyses of multiple performance indicators demonstrate that our scheme exhibits strong robustness against Common Signal Processing(CSP)and Geometric Deformation(GD)attacks,outperforming other advanced video watermarking algorithms under similar conditions of invisibility,reversibility,and embedding capacity.This underscores the effectiveness and feasibility of our attack simulation fitting strategy.展开更多
Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy ...Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy for revascularization. Cortical spreading depression (CSD, also called cortical spreading depolarization) is a pathophysiological phenomenon whereby a wave of depolarization is thought to propagate across the cerebral cortex, creating a brief period of relative neuronal inactivity. The relationship between CSD and seizures is unclear, although some literature has made a correlation between seizures and a cortical environment conducive to CSD. Methods: Intraoperative somatosensory evoked potentials (SSEPs) and electroencephalography (EEG) were monitored continuously during the craniotomy procedure utilizing standard montages. Electrophysiological data from pre-ictal, ictal, and post-ictal periods were recorded. Results: During the procedure, intraoperative EEG captured a generalized seizure followed by a stepwise decrease in somatosensory evoked potential cortical amplitudes, compelling for the phenomenon of CSD. The subsequent partial recovery of neuronal function was also captured electrophysiologically. Discussion: While CSD is considered controversial in some aspects, intraoperative neurophysiological monitoring allowed for the unique analysis of a case demonstrating a CSD-like phenomenon. To our knowledge, this is the first published example of this phenomenon in which intraoperative neurophysiological monitoring captured a seizure, along with a stepwise subsequent reduction in SSEP cortical amplitudes not explained by other variables.展开更多
This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated usin...This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated using empirical, analytical and numerical approaches based on the parameters of the rock mass and the foundation. Laboratory tests were carried out on basanite, as well as on the other facies detected. The results of these studies give a range of allowable bearing capacity values varying between 1.92 and 11.39 MPa for the empirical methods and from 7.13 to 25.50 MPa for the analytical methods. A wide dispersion of results was observed according to the different approaches. This dispersion of results is explained by the use of different rock parameters depending on the method used. The allowable bearing capacity results obtained with varying approaches of calculation remain admissible to support the loads. On the other hand, the foundation calculations show acceptable settlement of the order of a millimeter for all the layers, especially in the thin clay layers resting on the bedrock at shallow depths, where the rigidity of the rock reduces settlement.展开更多
Financing sources for urban construction have garnered significant attention globally.Among various financing methods,the urban construction investment bond(UCIB)is unique to China.The UCIB credit spread,which represe...Financing sources for urban construction have garnered significant attention globally.Among various financing methods,the urban construction investment bond(UCIB)is unique to China.The UCIB credit spread,which represents the compensation for credit risk,has become a focal point for researchers.However,owing to shortcomings of previous approaches,few scholars have accurately assessed the impact of implicit government guarantees on credit spreads.This study introduces an innovative approach that uses orthogonal decomposition to extract proprietary information from credit ratings,reflecting implicit government guarantees.After accounting for bond factors,local government financing vehicle factors,and macroeconomic conditions,the implicit government guarantee substantially reduces the UCIB's credit spread.This conclusion remains robust when controlling for investor attention,regional factors,or duration.展开更多
Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in d...Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72171136 and 72134004)Humanities and Social Science Research Project,Ministry of Education of China(Grant No.21YJC630157)+1 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MG008)Shandong Provincial Colleges and Universities Youth Innovation Technology of China(Grant No.2022RW066)。
文摘Health information spreads rapidly,which can effectively control epidemics.However,the swift dissemination of information also has potential negative impacts,which increasingly attracts attention.Message fatigue refers to the psychological response characterized by feelings of boredom and anxiety that occur after receiving an excessive amount of similar information.This phenomenon can alter individual behaviors related to epidemic prevention.Additionally,recent studies indicate that pairwise interactions alone are insufficient to describe complex social transmission processes,and higher-order structures representing group interactions are crucial.To address this,we develop a novel epidemic model that investigates the interactions between information,behavioral responses,and epidemics.Our model incorporates the impact of message fatigue on the entire transmission system.The information layer is modeled using a static simplicial network to capture group interactions,while the disease layer uses a time-varying network based on activity-driven model with attractiveness to represent the self-protection behaviors of susceptible individuals and self-isolation behaviors of infected individuals.We theoretically describe the co-evolution equations using the microscopic Markov chain approach(MMCA)and get the epidemic threshold.Experimental results show that while the negative impact of message fatigue on epidemic transmission is limited,it significantly weakens the group interactions depicted by higher-order structures.Individual behavioral responses strongly inhibit the epidemic.Our simulations using the Monte Carlo(MC)method demonstrate that greater intensity in these responses leads to clustering of susceptible individuals in the disease layer.Finally,we apply the proposed model to real networks to verify its reliability.In summary,our research results enhance the understanding of the information-epidemic coupling dynamics,and we expect to provide valuable guidance for managing future emerging epidemics.
基金supported by Three-Year Initiative Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)Key Discipline Project(No.GWVI-11.1-12).
文摘Objective:To predict the distribution of dengue vector Aedes(Ae.)albopictus and identify high-risk areas for dengue fever transmission.Methods:Data on Ae.albopictus occurrences were collected from electronic databases.Ensemble models were developed to assess the impacts of climate,vegetation,and human activity on Ae.albopictus.The optimal ensemble model was then used to identify the distribution of suitable areas for Ae.albopictus.Results:After removing duplicate sites and retaining only one location per 100 m×100 m grid,189 Ae.albopictus breeding sites were identified.The optimal ensemble model revealed that Ae.albopictus exhibited higher breeding suitability in Shanghai under specific conditions:a normalized difference vegetation index of 0.1 to 0.6,maximum precipitation in the warmest month ranging from 400 mm to 470 mm,maximum temperature in the warmest month between 30.0℃and 31.0℃,and proximity to waterways within 0.5 km.The most suitable habitats for Ae.albopictus were primarily concentrated in Shanghai’s central urban areas and scattered across the inner suburban districts.Conclusions:The high-risk areas of Ae.albopictus are widely distributed throughout the central urban area and scattered across the inner suburban district of Shanghai,creating conditions conducive to the outbreak of dengue fever.It is essential to enhance targeted control measures for Ae.albopictus in the identified risk areas.
基金Project supported by the National Natural Science Foundation of China (Grant No. 72174121)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Soft Science Research Project of Shanghai (Grant No. 22692112600)。
文摘Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.
基金supported by the National Key R&D Program of China(Grant No.2021YFD1400300).
文摘Botryosphaeria laricina(larch shoot blight)was first identified in 1973 in Jilin Province,China.The disease spread rapidly and caused considerable damage because its pathogenesis was unknown at the time and there were no effective controls or quarantine methods.At present,it shows a spreading trend,but most research can only conduct physiological analyses within a relatively short period,combining individual influencing factors.Nevertheless,methods such as neural network models,ensemble learning algorithms,and Markov models are used in pest and disease prediction and forecasting.However,there may be fitting issues or inherent limitations associated with these methods.This study obtained B.laricina data at the county level from 2003 to 2021.The dataset was augmented using the SMOTE algorithm,and then algorithms such as XGBoost were used to select the significant features from a combined set of 12 features.A new stacking fusion model has been proposed to predict the status of B.laricina.The model is based on random forest,gradient boosted decision tree,CatBoost and logistic regression algorithms.The accuracy,recall,specificity,precision,F_(1) value and AUC of the model reached 90.9%,91.6%,90.4%,88.8%,90.2%and 96.2%.The results provide evidence of the strong performance and stability of the model.B.laricina is mainly found in the northeast and this study indicates that it is spreading northwest.Reasonable means should be used promptly to prevent further damage and spread.
基金funding enabled and organized by CAUL and its Member Institutions.
文摘The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12305043 and 12165016)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220511)+1 种基金the Project of Undergraduate Scientific Research(Grant No.22A684)the support from the Jiangsu Specially-Appointed Professor Program。
文摘Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.
文摘BACKGROUND Colorectal laterally spreading tumors(LSTs)are best treated with endoscopic submucosal dissection or endoscopic mucosal resection.AIM To analyze the clinicopathological and endoscopic profiles of colorectal LSTs,determine predictive factors for high-grade dysplasia(HGD)/carcinoma(CA),submucosal invasion,and complications.METHODS We retrospectively assessed the endoscopic and histological characteristics of 375 colorectal LSTs at our hospital between January 2016 and December 2023.We performed univariate and multivariate analysis to identify risk factors associated with HGD/CA,submucosal invasion and complications.RESULTS The numbers of granular(LST-G)and non-granular LST(LST-NG)were 260 and 115,respectively.The rates of low-grade dysplasia and HGD/CA were 60.3%and 39.7%,respectively.Multivariate analysis indicated that a tumor size≥30 mm[odds ratio(OR)=1.934,P=0.032],LST granular nodular mixed type(OR=2.100,P=0.005),and LST non-granular pseudo depressed type(NG-PD)(OR=3.016,P=0.015)were independent risk factors significantly associated with higher odds of HGD/CA.NG-PD(OR=6.506,P=0.001),tumor size(20-29 mm)(OR=2.631,P=0.036)and tumor size≥30 mm(OR=3.449,P=0.016)were associated with increased odds of submucosal invasion.Tumor size≥30 mm(OR=4.888,P=0.003)was a particularly important predictor of complications.A nomogram model demonstrated a satisfactory fit,with an area under the receiver operating characteristic curve of 0.716(95%confidence interval:0.653-0.780),indicating strong predictive performance.CONCLUSION The novel nomogram incorporating tumor size,location,and morphology predicted HGD/CA during endoscopic resection for LSTs.NG-PD lesions larger than 20 mm were more likely to invade the submucosa.Tumor size≥30 mm was an important predictor of complications.
基金supported by the Natural Science Basic Research Program of Shanxi(Grant No.2024JC-YBMS-025)the Innovation Capability Support Program of Shanxi(Grant No.2024RS-CXTD-88)。
文摘This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward spreading speeds for the infective individuals, which can be used to estimate how fast the disease spreads. To overcome the difficulty arising from the lack of comparison principle for such time-space periodic nonmonotone systems, our proof is mainly based on constructing a series of scalar time-space periodic equations, establishing the spreading speeds for such auxiliary equations and using comparison methods. It may be the first work to study the spreading speed for time-space periodic non-monotone systems.
文摘The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.
基金Supported by NSFC(Nos.12171089,12271235)NSF of Fujian Province(No.2021J02048)。
文摘A graph G possesses Hamiltonian s-properties when G is Hamilton-connected if s=1,Hamiltonian if s=0,and traceable if s=-1.Let S_A(G)=λ_n(G)-λ_1(G)and S_L(G)=μ_n(G)-μ_2(G)be the spread and the Laplacian spread of G,respectively,whereλ_n(G)andλ_1(G)are the largest and smallest eigenvalues of G,andμ_n(G)andμ_2(G)are the largest and second smallest Laplacian eigenvalues of G,respectively.In this paper,we shall present two sufficient conditions involving S_A(G)and S_L(G)for a k-connected graph to possess Hamiltonian s-properties,respectively.We also derive a sufficient condition on the Laplacian eigenratio μ2(G)/μ(G) for a k-connected graph to possess Hamiltonian s-properties.
基金the Postdoctoral ScienceFoundation of China(No.2023M730156)the NationalNatural Foundation of China(No.62301012).
文摘Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62373197 and 62203229)the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1211)。
文摘There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.
基金Project supported by the National Natural Science Foundation of China(Grant No.72274208)。
文摘In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psychological stress and their emotions will rapidly spread to others.This paper establishes the attack-escape evacuation simulation model(AEES-SFM),based on the social force model,to consider emotion spreading under attack.In this model,(1)the attack-escape driving force is considered for the interaction between an attacker and evacuees and(2)emotion spreading among the evacuees is considered to modify the value of the psychological force.To validate the simulation,several experiments were carried out at a university in China.Comparing the simulation and experimental results,it is found that the simulation results are similar to the experimental results when considering emotion spreading.Therefore,the AEES-SFM is proved to be effective.By comparing the results of the evacuation simulation without emotion spreading,the emotion spreading model reduces the evacuation time and the number of casualties by about 30%,which is closer to the real experimental results.The results are still applicable in the case of a 40-person evacuation.This paper provides theoretical support and practical guidance for campus response to violent attacks.
基金supported by the National Natural Science Foundation of China(Grant No.22273034)the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University。
文摘The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.
基金supported in part by the National Natural Science Foundation of China under Grant 62202496,62272478the Basic Frontier Innovation Project of Engineering University of People Armed Police under Grant WJY202314,WJY202221.
文摘To address the challenges of video copyright protection and ensure the perfect recovery of original video,we propose a dual-domain watermarking scheme for digital video,inspired by Robust Reversible Watermarking(RRW)technology used in digital images.Our approach introduces a parameter optimization strategy that incre-mentally adjusts scheme parameters through attack simulation fitting,allowing for adaptive tuning of experimental parameters.In this scheme,the low-frequency Polar Harmonic Transform(PHT)moment is utilized as the embedding domain for robust watermarking,enhancing stability against simulation attacks while implementing the parameter optimization strategy.Through extensive attack simulations across various digital videos,we identify the optimal low-frequency PHT moment using adaptive normalization.Subsequently,the embedding parameters for robust watermarking are adaptively adjusted to maximize robustness.To address computational efficiency and practical requirements,the unnormalized high-frequency PHT moment is selected as the embedding domain for reversible watermarking.We optimize the traditional single-stage extended transform dithering modulation(STDM)to facilitate multi-stage embedding in the dual-domain watermarking process.In practice,the video embedded with a robust watermark serves as the candidate video.This candidate video undergoes simulation according to the parameter optimization strategy to balance robustness and embedding capacity,with adaptive determination of embedding strength.The reversible watermarking is formed by combining errors and other information,utilizing recursive coding technology to ensure reversibility without attacks.Comprehensive analyses of multiple performance indicators demonstrate that our scheme exhibits strong robustness against Common Signal Processing(CSP)and Geometric Deformation(GD)attacks,outperforming other advanced video watermarking algorithms under similar conditions of invisibility,reversibility,and embedding capacity.This underscores the effectiveness and feasibility of our attack simulation fitting strategy.
文摘Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy for revascularization. Cortical spreading depression (CSD, also called cortical spreading depolarization) is a pathophysiological phenomenon whereby a wave of depolarization is thought to propagate across the cerebral cortex, creating a brief period of relative neuronal inactivity. The relationship between CSD and seizures is unclear, although some literature has made a correlation between seizures and a cortical environment conducive to CSD. Methods: Intraoperative somatosensory evoked potentials (SSEPs) and electroencephalography (EEG) were monitored continuously during the craniotomy procedure utilizing standard montages. Electrophysiological data from pre-ictal, ictal, and post-ictal periods were recorded. Results: During the procedure, intraoperative EEG captured a generalized seizure followed by a stepwise decrease in somatosensory evoked potential cortical amplitudes, compelling for the phenomenon of CSD. The subsequent partial recovery of neuronal function was also captured electrophysiologically. Discussion: While CSD is considered controversial in some aspects, intraoperative neurophysiological monitoring allowed for the unique analysis of a case demonstrating a CSD-like phenomenon. To our knowledge, this is the first published example of this phenomenon in which intraoperative neurophysiological monitoring captured a seizure, along with a stepwise subsequent reduction in SSEP cortical amplitudes not explained by other variables.
文摘This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated using empirical, analytical and numerical approaches based on the parameters of the rock mass and the foundation. Laboratory tests were carried out on basanite, as well as on the other facies detected. The results of these studies give a range of allowable bearing capacity values varying between 1.92 and 11.39 MPa for the empirical methods and from 7.13 to 25.50 MPa for the analytical methods. A wide dispersion of results was observed according to the different approaches. This dispersion of results is explained by the use of different rock parameters depending on the method used. The allowable bearing capacity results obtained with varying approaches of calculation remain admissible to support the loads. On the other hand, the foundation calculations show acceptable settlement of the order of a millimeter for all the layers, especially in the thin clay layers resting on the bedrock at shallow depths, where the rigidity of the rock reduces settlement.
基金supported by grants from Major Program of National Social Science Foundation(No.22&ZDo73).
文摘Financing sources for urban construction have garnered significant attention globally.Among various financing methods,the urban construction investment bond(UCIB)is unique to China.The UCIB credit spread,which represents the compensation for credit risk,has become a focal point for researchers.However,owing to shortcomings of previous approaches,few scholars have accurately assessed the impact of implicit government guarantees on credit spreads.This study introduces an innovative approach that uses orthogonal decomposition to extract proprietary information from credit ratings,reflecting implicit government guarantees.After accounting for bond factors,local government financing vehicle factors,and macroeconomic conditions,the implicit government guarantee substantially reduces the UCIB's credit spread.This conclusion remains robust when controlling for investor attention,regional factors,or duration.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No.YJKYYQ20190044)the National Key Research and Development Program of China (Grant No.2022YFB3903100)+1 种基金the High-level introduction of talent research start-up fund of Hefei Normal University in 2020 (Grant No.2020rcjj34)the HFIPS Director’s Fund (Grant No.YZJJ2022QN12).
文摘Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.