In this paper,the pCO_2 sensitive electrode was studied for continuous measurement.The solid electrolyte membrane and gas-permeable membrane were coated on the surface of the pH sensitive electrode which was fabricate...In this paper,the pCO_2 sensitive electrode was studied for continuous measurement.The solid electrolyte membrane and gas-permeable membrane were coated on the surface of the pH sensitive electrode which was fabricated based on the SnO_2/ITO glass substrate.According to the experimental results,the pCO_2 sensitive electrode shows the sensitivity of about 35 mV/decade in detection range between 0.1 mmol/L and 50 mmol/L.Moreover,the investigated sensing structure exhibits the convenient and pragmatic properties of the pCO_2 measurement.In summary,the advantages of the pCO_2 sensitive electrode are low-cost and disposable based on the separative structure.展开更多
The extended gate field effect transistor (EGFET)has many advantages such as the fabrication is easy,low cost, easy to operate etc.The EGFET was applied to biosensor in recent years.In this study,the tin oxide (SnO_2)...The extended gate field effect transistor (EGFET)has many advantages such as the fabrication is easy,low cost, easy to operate etc.The EGFET was applied to biosensor in recent years.In this study,the tin oxide (SnO_2)pH sensitive membrane was deposited on ITO glass,when the surface voltage which pH membrane changes,the gate voltage and current channel of MOSFET will change immediately to detect concentration of the glucose sensor.In this study we have devoted to research about the calibration of the circuit measurement for the glucose sensor,and study the calibration system of the drift and hysteresis.展开更多
The application of Bluetooth on the pH sensor was accomplished.Based on the experimental results,Bluetooth technology was used to measure pH values without limiting the distance.Moreover,Biuetooth technology provides ...The application of Bluetooth on the pH sensor was accomplished.Based on the experimental results,Bluetooth technology was used to measure pH values without limiting the distance.Moreover,Biuetooth technology provides low power, low cost and small volume,therefore,it can increase the practicability of the system.In this investigation,the pH value was detected by the SnO_2/ITO glass-based pH sensor.During the signal progress,the detected signal was transferred to the microchip PIC18.After that,the microchip was able to communicate with PC by the Bluetooth.Moreover,the microchip can diagnose the sensing signal and sends the warning signal by alert function.In addition,the part of PC has the ability to record the information,builds the database for analyzing the pH values,and provides a better long-distance monitoring system.展开更多
An extended-gate field effect transistor (EGFET)of SnO_2/ITO glass was applied to manufacture the vitamin C sensor.Therefore,we immobilized the ascorbate oxidase with 3-glycidoxypropyltrimethoxysilane (GPTS)method to ...An extended-gate field effect transistor (EGFET)of SnO_2/ITO glass was applied to manufacture the vitamin C sensor.Therefore,we immobilized the ascorbate oxidase with 3-glycidoxypropyltrimethoxysilane (GPTS)method to measure the different concentrations of the vitamin C solution in an optimum measurement environment.In order to find the best measurement conditions of the biosensor,we studied the vitamin C sensor in different pH values of the phosphate buffer solution (PBS).Additionally,we used experimental results to discuss the response time and response voltage to compare vitamin C with orange juice for the vitamin C sensor.展开更多
Indium tin oxide(ITO)nanopowders were prepared by a modified chemical co-precipitation process.The influence of different SnO2 contents on the decomposition behavior of ITO precursors,and on the phase and morphology o...Indium tin oxide(ITO)nanopowders were prepared by a modified chemical co-precipitation process.The influence of different SnO2 contents on the decomposition behavior of ITO precursors,and on the phase and morphology of ITO precursors and ITO nanopowders were studied by X-ray diffractometry,transmission electron microscopy and differential thermal and thermogravimetry analysis methods.The TG-DSC curves show that the decomposition process of precursor precipitation is completed when the temperature is close to 600 ℃and the end temperature of decompositionis somewhat lower when the doping amount of SnO2 is increased.The XRD patterns indicate that the solubility limit of Sn4+ relates directly to the calcining temperature. When being calcined at 700℃,a single phase ITO powder with 15%SnO2(mass fraction)can be obtained.But,when the calcining temperature is higher than 800℃,the phase of SnO2 will appear in ITO nanopowders which contain more than 10%SnO2.The particle size of the ITO nanopowders is 15-25 nm.The ITO nanoparticles without Sn have a spherical shape,but their morphology moves towards an irregular shape when being doped with Sn4+.展开更多
文摘In this paper,the pCO_2 sensitive electrode was studied for continuous measurement.The solid electrolyte membrane and gas-permeable membrane were coated on the surface of the pH sensitive electrode which was fabricated based on the SnO_2/ITO glass substrate.According to the experimental results,the pCO_2 sensitive electrode shows the sensitivity of about 35 mV/decade in detection range between 0.1 mmol/L and 50 mmol/L.Moreover,the investigated sensing structure exhibits the convenient and pragmatic properties of the pCO_2 measurement.In summary,the advantages of the pCO_2 sensitive electrode are low-cost and disposable based on the separative structure.
文摘The extended gate field effect transistor (EGFET)has many advantages such as the fabrication is easy,low cost, easy to operate etc.The EGFET was applied to biosensor in recent years.In this study,the tin oxide (SnO_2)pH sensitive membrane was deposited on ITO glass,when the surface voltage which pH membrane changes,the gate voltage and current channel of MOSFET will change immediately to detect concentration of the glucose sensor.In this study we have devoted to research about the calibration of the circuit measurement for the glucose sensor,and study the calibration system of the drift and hysteresis.
文摘The application of Bluetooth on the pH sensor was accomplished.Based on the experimental results,Bluetooth technology was used to measure pH values without limiting the distance.Moreover,Biuetooth technology provides low power, low cost and small volume,therefore,it can increase the practicability of the system.In this investigation,the pH value was detected by the SnO_2/ITO glass-based pH sensor.During the signal progress,the detected signal was transferred to the microchip PIC18.After that,the microchip was able to communicate with PC by the Bluetooth.Moreover,the microchip can diagnose the sensing signal and sends the warning signal by alert function.In addition,the part of PC has the ability to record the information,builds the database for analyzing the pH values,and provides a better long-distance monitoring system.
文摘An extended-gate field effect transistor (EGFET)of SnO_2/ITO glass was applied to manufacture the vitamin C sensor.Therefore,we immobilized the ascorbate oxidase with 3-glycidoxypropyltrimethoxysilane (GPTS)method to measure the different concentrations of the vitamin C solution in an optimum measurement environment.In order to find the best measurement conditions of the biosensor,we studied the vitamin C sensor in different pH values of the phosphate buffer solution (PBS).Additionally,we used experimental results to discuss the response time and response voltage to compare vitamin C with orange juice for the vitamin C sensor.
基金Project(U0837604)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(07C40291)supported by Research Fund of Yunnan Education Department,ChinaProject(2007003)supported by Research Fund of Kunming University of Science and Technology,China
文摘Indium tin oxide(ITO)nanopowders were prepared by a modified chemical co-precipitation process.The influence of different SnO2 contents on the decomposition behavior of ITO precursors,and on the phase and morphology of ITO precursors and ITO nanopowders were studied by X-ray diffractometry,transmission electron microscopy and differential thermal and thermogravimetry analysis methods.The TG-DSC curves show that the decomposition process of precursor precipitation is completed when the temperature is close to 600 ℃and the end temperature of decompositionis somewhat lower when the doping amount of SnO2 is increased.The XRD patterns indicate that the solubility limit of Sn4+ relates directly to the calcining temperature. When being calcined at 700℃,a single phase ITO powder with 15%SnO2(mass fraction)can be obtained.But,when the calcining temperature is higher than 800℃,the phase of SnO2 will appear in ITO nanopowders which contain more than 10%SnO2.The particle size of the ITO nanopowders is 15-25 nm.The ITO nanoparticles without Sn have a spherical shape,but their morphology moves towards an irregular shape when being doped with Sn4+.