期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries
1
作者 Hui Li Zhiqiang Liu +8 位作者 Lei Li Yehong Zhang Zeheng Li Huixin Lan Zhenhe Zhu Yuchen Wu Jiajia Li Chuanbo Zheng Jun Lu 《Carbon Energy》 2025年第5期136-171,共36页
The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing ele... The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs.Next-generation anode materials face significant challenges,including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling.Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages.Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials.Despite significant advances in this field,comprehensive reviews summarizing the latest developments are still sparse.This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials.It begins with an explanation of the concept of heterojunctions,including their fabrication,characterization,and classification.Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted.Finally,the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area. 展开更多
关键词 characterization methods electrochemical performance HETEROJUNCTION sn-based anode materials synthesis methods
在线阅读 下载PDF
Advances in micro/nanoparticle-enhanced Sn-based composite solders
2
作者 Kaiming Liang Wenqiang Wan +4 位作者 Yifei Li Xin Zhang Xiangdong Ding Peng He Shuye Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2043-2064,共22页
Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development ... Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development in this area.In recent years,the addition of micro/nanoreinforcement phases to Sn-based solders has provided a solution to improve the intrinsic properties of the solders.This paper reviews the progress in Sn-based micro/nanoreinforced composite solders over the past decade.The types of reinforcement particles,preparation methods of the composite solders,and strengthening effects on the microstructure,wettability,melting point,mechanical properties,and corrosion resistance under different particle-addition levels are discussed and summarized.The mechanisms of performance enhancement are summarized based on material-strengthening effects such as grain refinement and second-phase dispersion strengthening.In addition,we discuss the current shortcomings of such composite solders and possible future improvements,thereby establishing a theoretical foundation for the future development of Sn-based solders. 展开更多
关键词 sn-based composite solder micro/nanoparticles properties electronic packaging microstructure corrosion resistance
在线阅读 下载PDF
Advances in Sn-based electrocatalysts for selective reduction of CO_(2) to formate
3
作者 ZHANG Ying-ping LI Wei-jie +1 位作者 HAN Chao LIU Yong 《Journal of Central South University》 2025年第5期1581-1601,共21页
The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) ... The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) and promote the balance of the carbon cycle.Formate is one of the most economical and practical products of all the electrochemical CO_(2) reduction products.Among the many metal-based electrocatalysts that can convert CO_(2) into formate,Sn-based catalysts have received a lot of attention because of their low-cost,non-toxic characteristics and high selectivity for formate.In this article,the most recent development of Sn-based electrocatalysts is comprehensively summarized by giving examples,which are mainly divided into monometallic Sn,alloyed Sn,Sn-based compounds and Sn composite catalysts.Finally,the current performance enhancement strategies and future directions of the field are summarized. 展开更多
关键词 CO_(2)electrochemical reduction sn-based electrocatalysts FORMATE progress and perspective selective reduction
在线阅读 下载PDF
Machine learning guided efficiency improvement for Sn-based perovskite solar cells with efficiency exceeding 20%
4
作者 Wei-Yin Gao Chen-Xin Ran +6 位作者 Liang Zhao He Dong Wang-Yue Li Zhao-Qi Gao Ying-Dong Xia Hai Huang Yong-Hua Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第11期5720-5733,共14页
Eco-friendly lead-free tin(Sn)-based perovskites have drawn much attention in the field of photovoltaic s,and the highest power conversion efficiency(PCE)of Sn-based perovskite solar cells(PSCs)has been recently appro... Eco-friendly lead-free tin(Sn)-based perovskites have drawn much attention in the field of photovoltaic s,and the highest power conversion efficiency(PCE)of Sn-based perovskite solar cells(PSCs)has been recently approaching 15%.However,the PCE improvement of Sn-based PSCs has reached bottleneck,and an unambiguous guidance beyond traditional trial-and-error process is highly desired for further boosting their PCE.In this work,machine learning(ML)approach based on artificial neural network(ANN)algorithm is adopted to guide the development of Sn-based PSCs by learning from currently available data.Two models are designed to predict the bandgap of newly designed Sn-based perovskites and photovoltaic performance trends of the PSCs,and the practicability of the models are verified by real experimental data.Moreover,by analyzing the physical mechanisms behind the predicted trends,the typical characteristics of Sn-based perovskites can be derived even no relevant inputs are provided,demonstrating the robustness of the developed models.Based on the models,it is predicted that wide bandgap Sn-based PSCs with optimized interfacial energy level alignment could obtain promising PCE breaking 20%.At last,critical suggestions for future development of Sn-based PSCs are provided.This work opens a new avenue for guiding and promoting the development of high-performing Sn-based PSCs. 展开更多
关键词 sn-based perovskite Machine learning Solar cells Wide bandgap Energy band alignment
原文传递
Evolution mechanism of interconnect interface and shear properties of 64.8Sn35.2Pb microbump during flip chip bonding
5
作者 SHEN Yu-lu LUO Jiao +2 位作者 XU Keng-feng WU Dao-wei ZHANG Ning 《Journal of Central South University》 2025年第4期1284-1298,共15页
Effect of flip chip bonding parameters on microstructure at the interconnect interface and shear properties of 64.8Sn35.2Pb microbumps were investigated in this work.Results show that the main intermetallic compound(I... Effect of flip chip bonding parameters on microstructure at the interconnect interface and shear properties of 64.8Sn35.2Pb microbumps were investigated in this work.Results show that the main intermetallic compound(IMC)at the interconnect interface is(Ni,Cu)_(3)Sn_(4)phase,and meanwhile a small amount of(Cu,Ni)_(6)Sn_(5)phase with a size of 50−100 nm is formed around(Ni,Cu)_(3)Sn_(4)phase.The orientation relationship of[-1-56](Ni,Cu)_(3)Sn_(4)//[152](Cu,Ni)_(6)Sn_(5)and(601)(Ni,Cu)_(3)Sn_(4)//(-201)(Cu,Ni)_(6)Sn_(5)is found between these two phases,and the atomic matching at the interface of the two phases is low.The highest shear force of 77.3 gf is achieved in the 64.8Sn35.2Pb microbump at the peak temperature of 250℃and parameter V1 because dense IMCs and no cracks form at the interconnect interface.Two typical fracture modes of microbumps are determined as solder fracture and mixed fracture.The high thermal stress presenting in the thick IMCs layer induces crack initiation,and cracks propagate along theα/βphase boundaries in the Sn-Pb solder under shear force,leading to a mixed fracture mode in the microbumps. 展开更多
关键词 flip chip bonding microbump SN-PB intermetallic compound orientation relationship shear properties
在线阅读 下载PDF
Recycling of metals from waste Sn-based alloys by vacuum separation 被引量:12
6
作者 杨斌 孔令鑫 +2 位作者 徐宝强 刘大春 戴永年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1315-1324,共10页
In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be se... In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be separated from Sn effectively. Based on the above calculation, the industrial experiments of vacuum distillation of Sn-Pb alloy, Sn-Pb-Sb alloy, Sn-Pb-Sb-As alloy, crude Sn and Sn-Zn alloy with different contents were carried out. The experimental results show that Pb(>99% Pb) and Sn(≤0.003% Pb) were obtained simultaneously while Sn-Pb alloy was subjected to vacuum distillation; the crude Sn(>90% Sn, ≤ 2% Pb, ≤6% Sb) and crude Pb(≤2% Sn) were obtained simultaneously while a single vacuum distillation was carried out for Sn-Pb-Sb alloy; the Pb and Bi contents in the Sn ingot(99.99% Sn) achieve the grade A of GB/T 728—2010 standard, more than 50% of As and Sb was removed after vacuum distillation of crude Sn; Zn(<0.002% Sn) and Sn(about 3% Zn) were obtained while vacuum distillation of Sn-Zn alloy was conducted at 1173 K, 20-30 Pa for 8-10 h. 展开更多
关键词 sn-based alloys activity coefficient vacuum distillation vapor-liquid phase equilibrium
在线阅读 下载PDF
Advances in Sn-Based Catalysts for Electrochemical CO_(2) Reduction 被引量:9
7
作者 Shulin Zhao Sheng Li +4 位作者 Tao Guo Shuaishuai Zhang Jing Wang Yuping Wu Yuhui Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期114-132,共19页
The increasing concentration of CO2 in the atmosphere has led to the greenhouse effect,which greatly affects the climate and the ecological balance of nature.Therefore,converting CO2 into renewable fuels via clean and... The increasing concentration of CO2 in the atmosphere has led to the greenhouse effect,which greatly affects the climate and the ecological balance of nature.Therefore,converting CO2 into renewable fuels via clean and economical chemical processes has become a great concern for scientists.Electrocatalytic CO2 conversion is a prospective path toward carbon cycling.Among the different electrocatalysts,Sn-based electrocatalysts have been demonstrated as promising catalysts for CO2 electroreduction,producing formate and CO,which are important industrial chemicals.In this review,various Sn-based electrocatalysts are comprehensively summarized in terms of synthesis,catalytic performance,and reaction mechanisms for CO2 electroreduction.Finally,we concisely discuss the current challenges and opportunities of Sn-based electrocatalysts. 展开更多
关键词 Greenhouse effect CO_(2) ELECTROCHEMICAL REDUCTION sn-based ELECTROCATALYSTS
在线阅读 下载PDF
Realizing ultra-pure red emission with Sn-based lead-free perovskites 被引量:4
8
作者 Oleksandr Voznyy 《Rare Metals》 SCIE EI CAS CSCD 2020年第4期330-331,共2页
Light-emitting diodes(LEDs)are key for the development of next-generation displays for ultra-high-definition television.Alternative materials beyond organic LEDs are required to meet the color purity standards,while r... Light-emitting diodes(LEDs)are key for the development of next-generation displays for ultra-high-definition television.Alternative materials beyond organic LEDs are required to meet the color purity standards,while retaining low processing cost and environmental friendliness.Liang and colleagues report in Advanced Science that two-dimensional(2D)tin halide perovskite—efficiently stabilized by H3PO2 incorporation—has great promise for ultra-pure red LEDs. 展开更多
关键词 Realizing ultra-pure red emission with sn-based lead-free perovskites RED
原文传递
A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage
9
作者 Xinlu Zhang Lu Han +4 位作者 Junfeng Li Ting Lu Jinliang Li Guang Zhu Likun Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第2期156-164,共9页
Recently,Coordination Polymers(CPs)have been widely utilized as energy storage materials for reversible Lithium-Ion Batteries(LIBs)benefiting from their tunable building blocks and adjusted electrochemical properties.... Recently,Coordination Polymers(CPs)have been widely utilized as energy storage materials for reversible Lithium-Ion Batteries(LIBs)benefiting from their tunable building blocks and adjusted electrochemical properties.However,the unsatisfied electrochemical behavior of CPs with poor conductivity and sluggish ion transport kinetics is still a bottle-neck for their large-scale energy storage applications in LIBs.Herein,we display the rational fabrication of a conductive Sn-based coordination polymer(Sn-DHTPA)via judiciously choosing suitable building units.The Sn-DHTPA is employed as anode for LIBs,exhibiting superior reversible storage capacity of 1142.6 m A h g^(-1) at 0.1 A g^(-1) after 100 cycles and impressive rate storage capability of 287.7 m A h g^(-1)at 20 A g^(-1).More importantly,a robust cycling performance of 205.5 m A h g^(-1) at an extra-high current density of 20 A g^(-1) are observed without remarkable capacity-fading up to1000 cycles.The behavior superiority of Sn-DHTPA is related to its advanced architecture with abundant lithium storage sites,high electrical conductivity and rapid lithium transport.A series of ex-situ characterizations reveal that the impressive lithium storage capacity is contributed by the redox active sites of both the aromatic linker and metal center related to in-situ generated metallic nanoparticles dispersed in the skeleton. 展开更多
关键词 sn-based coordination polymer High electrical conductivity Li-ion batteries ANODE Lithium storage mechanism
原文传递
Modeling of a Sn-Based HTM-Free Perovskite Solar Cell Using a One-Dimensional Solar Cell Capacitance Simulator Tool
10
作者 Eli Danladi Muhammad Kashif +1 位作者 Andrew Ichoja Bikimi Bitrus Ayiya 《Transactions of Tianjin University》 EI CAS 2023年第1期62-72,共11页
Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transpor... Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transport material(HTM)-free PSC based on methyl ammonium tin triiodide(CH_(3) NH_(3) SnI_(3))was performed using a one-dimensional solar cell capacitance simulator(SCAPS-1D)software.The eff ect of perovskite thickness,interface defect density,temperature,and electron transport material(ETM)on the photovoltaic performance of the device was explored.Prior to optimization,the device demonstrated a power conversion effi ciency(PCE)of 8.35%,fi ll factor(FF)of 51.93%,short-circuit current density(J_(sc))of 26.36 mA/cm 2,and open circuit voltage(V_(oc))of 0.610 V.Changing the above parameters individually while keeping others constant,the obtained optimal absorber thickness was 1.0μm,the interface defect density was 1010 cm-2,the temperature was 290 K,and the TiO 2 thickness was 0.01μm.On simulating with the optimized data,the fi nal device gave a PCE of 11.03%,FF of 50.78%,J_(sc) of 29.93 mA/cm 2,and V_(oc) of 0.726 V.Comparing the optimized and unoptimized metric parameters,an improvement of~32.10%in PCE,~13.41%in J_(sc),and~19.02%in V_(oc) were obtained.Therefore,the results of this study are encouraging and can pave the path for developing highly effi cient PSCs that are cost-eff ective,eco-friendly,and comparable to state-of-the-art. 展开更多
关键词 Perovskite solar cells sn-based perovskite absorber TiO_(2) Defect density Temperature HTM-free
在线阅读 下载PDF
Electrical Transport Properties of Type-Ⅷ Sn-Based Single-Crystalline Clathrates (Eu/Ba)8Ga16Sn30 Prepared by Ga Flux Method
11
作者 Shu-Ping Deng Feng Cheng +6 位作者 De-Cong Li Yu Tang Zhong Chen Lan-Xian Shen Hong-Xia Liu Pei-Zhi Yang Shu-Kang Deng 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期92-96,共5页
Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu dop... Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu doping. Results indicate that Eu atoms tend to replace Ba atoms. With the increase of the Eu initial content, the carrier density increases and the carrier mobility decreases, which leads to an increase of the Seebeck coefficient. By contrast, the electrical conductivity decreases. Finally, the sample with Eu initial content of x = 0.75 behaves with excellent electrical properties, which shows a maximal power factor of 1.51 mW·m^-1K^-2 at 480K, and the highest ZT achieved is 0.87 near the temperature of 483K. 展开更多
关键词 Seebeck Eu/Ba Electrical Transport Properties of Type Prepared by Ga Flux Method sn-based Single-Crystalline Clathrates BA GA
原文传递
集成电路芯片锡基微凸点电迁移:从物理本质到可靠性提升
12
作者 黄明亮 王胜博 +3 位作者 尤海潮 刘厚麟 任婧 黄斐斐 《金属学报》 北大核心 2025年第7期979-997,共19页
随着先进封装技术向微型化、高性能方向发展,集成电路芯片锡基微凸点的直径持续减小至微米尺度,通过单个凸点的电流密度随直径减小呈平方增加,其电迁移行为与机理研究对集成电路芯片互连可靠性评估与设计具有重要价值。本文归纳分析了... 随着先进封装技术向微型化、高性能方向发展,集成电路芯片锡基微凸点的直径持续减小至微米尺度,通过单个凸点的电流密度随直径减小呈平方增加,其电迁移行为与机理研究对集成电路芯片互连可靠性评估与设计具有重要价值。本文归纳分析了芯片互连微凸点(焊点)电迁移现象的物理本质、主要影响因素和研究方法;系统综述了微焊点固-固电迁移过程中的极性效应、反极性效应和两相分离等电迁移行为特征与液-固电迁移过程中原子迁移、相析出和相溶解等电迁移行为特征;梳理评价了电迁移寿命的评估模型及修正模型;最后阐明了微焊点电迁移可靠性提升的方法,并展望了集成电路芯片互连锡基微凸点电迁移未来的研究方向和可靠性分析方法。 展开更多
关键词 电子封装 芯片互连 锡基微凸点 电迁移 可靠性
原文传递
2.5D封装关键技术的研究进展 被引量:1
13
作者 马千里 马永辉 +3 位作者 钟诚 李晓 廉重 刘志权 《电子与封装》 2025年第5期78-86,共9页
随着摩尔定律指引下的晶体管微缩逼近物理极限,先进封装技术通过系统微型化与异构集成,成为突破芯片性能瓶颈的关键路径。作为先进封装的核心分支,2.5D封装通过硅/玻璃中介层实现高密度互连与多芯片异构集成,兼具高带宽、低延迟和小型... 随着摩尔定律指引下的晶体管微缩逼近物理极限,先进封装技术通过系统微型化与异构集成,成为突破芯片性能瓶颈的关键路径。作为先进封装的核心分支,2.5D封装通过硅/玻璃中介层实现高密度互连与多芯片异构集成,兼具高带宽、低延迟和小型化优势,广泛应用于人工智能、高性能计算及移动电子领域。系统阐述了2.5D封装的核心结构(如Co Wo S、EMIB和I-Cube)及其技术特征,重点剖析了Chiplet模块化设计、硅通孔(TSV)工艺优化、微凸点可靠性提升、铜-铜直接键合界面工程以及再布线层多物理场协同设计等关键技术的最新进展。未来研究需聚焦低成本玻璃基板、原子层沉积技术抑制界面氧化以及多物理场协同设计等方面,以突破良率和散热瓶颈,推动2.5D封装在后摩尔时代高算力场景中的广泛应用。 展开更多
关键词 2.5D封装 再布线层 微凸点 硅通孔 铜-铜直接键合
在线阅读 下载PDF
The synergistic inhibition of the growth of intermetallic compounds at Sn-0.7Cu/Cu interface by Al and Pt
14
作者 An-Cang Yang Yao-Ping Lu +6 位作者 Bin Zhang Yong-Hua Duan Li-Shi Ma Shan-Ju Zheng Ming-Jun Peng Meng-Nie Li Zhi-Hang Xu 《Rare Metals》 2025年第6期4208-4225,共18页
The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of el... The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect.However,the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear.Herein,we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al(wt%)using the high-throughput screening(HTS)method.The results showed that it possesses excellent welding performance with an inhibition rate over 40%on the growth of IMCs layers.For Cu_(6)Sn_(5),the co-doping of Al and Pt not only greatly improves its thermodynamic stability,but also effectively suppresses the phase transition.Meanwhile,the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects.The substitution sites of Al and Pt in Cu_(6)Sn_(5)have been explored using atomic resolution imaging and advanced data informatics,indicating that Al and Pt preferentially substitute Sn and Cu atoms,respectively,to generate(Cu,Pt)_(6)(Sn,Al)_(5).A one-dimensional(1D)kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated,and the results showed that the error of the derived mathematical model is less than 5%.Finally,the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu_(6)Sn_(5)was further elucidated.This work provides a feasible route for the design and development of multi-component alloy solders. 展开更多
关键词 sn-based solder HTS IMCs layer Synergistic effect Growth kinetic models
原文传递
亚硫酸盐无氰体系电镀金凸块性能的影响因素 被引量:1
15
作者 张宁 李哲 +3 位作者 任长友 邓川 王彤 刘志权 《电镀与涂饰》 CAS 北大核心 2024年第11期1-7,共7页
[目的]鉴于先进封装技术向微型化和集成化发展,电镀金凸块成为液晶显示驱动芯片互连的首选。但纯金材料存在强度不足、易形变的问题,因此提升电镀金凸块的力学性能是该领域的研究重点之一。[方法]采用亚硫酸盐无氰体系在晶圆表面电镀金... [目的]鉴于先进封装技术向微型化和集成化发展,电镀金凸块成为液晶显示驱动芯片互连的首选。但纯金材料存在强度不足、易形变的问题,因此提升电镀金凸块的力学性能是该领域的研究重点之一。[方法]采用亚硫酸盐无氰体系在晶圆表面电镀金凸块,研究了镀液各组分浓度、工艺参数变化及镀液老化对金凸块性能的影响。[结果]晶圆表面各部位的金凸块外观均一,无漏镀、结瘤、针孔等缺陷,退火后的显微硬度约为90 HV,其力学性能可在较为宽泛的施镀工艺窗口、镀液组分浓度范围及镀液老化过程中保持稳定。[结论]该亚硫酸盐无氰电镀金工艺有望在高密度封装领域得到推广应用。 展开更多
关键词 无氰电镀 金微凸块 微观结构 显微硬度 剪切强度
在线阅读 下载PDF
Advances in Sn-based oxide catalysts for the electroreduction of CO_(2) to formate 被引量:5
16
作者 Xiaoyue Tu Xiangjian Liu +2 位作者 Yu Zhang Jiawei Zhu Heqing Jiang 《Green Carbon》 2024年第2期131-148,共18页
The excessive consumption of fossil fuels increases carbon dioxide(CO_(2))emissions,and the consequent greenhouse effect resulting from higher levels of this gas in the atmosphere has a significant impact on the envir... The excessive consumption of fossil fuels increases carbon dioxide(CO_(2))emissions,and the consequent greenhouse effect resulting from higher levels of this gas in the atmosphere has a significant impact on the environment and climate.This has necessitated the development of environmentally friendly and efficient methods for CO_(2)conversion.The carbon dioxide electroreduction reaction(CO_(2)RR),which is driven by electricity generated by renewable energy sources(e.g.,wind and solar)to convert CO_(2)into value-added fuels or chemicals,is regarded as a promising prospective path toward carbon cycling.Among the various products,formate,with its relatively simple preparation process,has broad application prospects,and can be used as fuel,hydrogen storage material,and raw material for downstream chemicals.Sn-based oxide electrocatalysts have the advantages of being inexpensive and nontoxic.In addition,these catalysts offer high product selectivity and are regarded as promising catalysts for the electrochemical reduction of CO_(2)to formate.In this review,we first clarify the reaction mechanisms and factors that influence the reduction of CO_(2)to formate,and then provide some examples of technologies that could be used to study the evolution of catalysts during the reaction.In particular,we focus on traditional Sn-based oxides(SnO_(2))and novel Sn-based perovskite oxides that have been developed for use in the field of CO_(2)RR in recent years by considering their synthesis,catalytic performance,optimization strategies,and intrinsic principles.Finally,the current challenges and opportunities for Sn-based oxide electrocatalysts are discussed.The perspectives and latest trends presented in this review are expected to inspire researchers to contribute more efforts toward comprehensively optimizing the performance of the CO_(2)RR to produce formate. 展开更多
关键词 CO_(2)electroreduction sn-based oxides FORMATE PEROVSKITE
在线阅读 下载PDF
Carbon-coated hybrid crystals with fast electrochemical reaction kinetics for ultra-stable and high-load sodium-ion batteries 被引量:1
17
作者 Chuan Ou Ming-Dong Tan +5 位作者 Zhen-Bang Li Zhao-Jie Li Fei Tian Zheng-Ping Qiao Dan-Ni Lei Cheng-Xin Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期647-657,共11页
Owing to its high theoretical capacity and low cost,Sn has attracted significant attention in sodium-ion batteries.However,the slow kinetics of electrochemical reactions and the rapid decay of capacity resulting from ... Owing to its high theoretical capacity and low cost,Sn has attracted significant attention in sodium-ion batteries.However,the slow kinetics of electrochemical reactions and the rapid decay of capacity resulting from drastic changes in the volume of Sn,as well as persistent side reactions between Sn and the organic electrolyte during the(de)sodium process,have limited its commercialization.To improve the electrochemical performance of Sn-based materials,the bottom-up method is normally used to prepare carbon-coated nanoparticles.However,its complex preparation processes and harsh conditions make it unsuitable for practical applications.Herein,a carbon-coated hybrid crystal composite(Sn/SnO_(x)@C)was prepared using an up-bottom method with commercial Sn/SnO nanoparticles.Various effects accelerate the electrochemical kinetics and inhibit the coarsening of Sn crystals.The Sn/SnO_(x)@C composite electrode exhibited capacity retention of 80.7%even after approximately 1000 cycles(360.4 mAh·g^(−1)) at a current density of 1 A·g^(−1).The high-load Na_(3)V_(2)(PO4)3||Sn/SnO_(x)@C full cell presents a capacity retention rate of 91.7%after 150 cycles at the current density of 0.5 A·g^(−1).This work may significantly accelerate the commercialization of the Sn/SnO_(x)@C composite in sodium-ion batteries with high energy density. 展开更多
关键词 Sodium-ion batteries(SIBs) sn-based anode Ultraviolet curing Up-bottom method
原文传递
应用于封装凸块的亚硫酸盐无氰电镀金工艺 被引量:1
18
作者 焦玉 李哲 +3 位作者 任长友 邓川 王彤 刘志权 《电镀与涂饰》 CAS 北大核心 2024年第5期39-45,共7页
[目的]在工业可持续发展战略下,环保无氰电镀金技术正逐步替代传统氰化物电镀金技术,并在微电子封装领域中得到推广应用。[方法]针对液晶驱动芯片封装晶圆电镀金凸块工艺制程,开发出一种新型亚硫酸盐无氰电镀金配方和工艺。[结果]自研... [目的]在工业可持续发展战略下,环保无氰电镀金技术正逐步替代传统氰化物电镀金技术,并在微电子封装领域中得到推广应用。[方法]针对液晶驱动芯片封装晶圆电镀金凸块工艺制程,开发出一种新型亚硫酸盐无氰电镀金配方和工艺。[结果]自研无氰电镀金药水中添加了有机膦酸添加剂和晶体调整剂,前者能够充分抑制镍金置换,后者有助于形成低应力的等轴晶组织,可避免施镀过程中国产光刻胶挤出变形现象。该自研无氰电镀金工艺应用于晶圆时可获得微观表面平整均匀和无缺陷的金凸块。[结论]该自研无氰电镀金工艺能够满足晶圆级封装的要求,具备很好的推广应用潜力。 展开更多
关键词 电子封装 金微凸块 无氰电镀 镍金置换 微观结构
在线阅读 下载PDF
Thermodynamic optimization of Bi-Ni binary system 被引量:1
19
作者 王江 孟凡桂 +1 位作者 刘立斌 金展鹏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期139-145,共7页
Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as subs... Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data. 展开更多
关键词 sn-based alloy phase diagram THERMODYNAMICS CALPHAD Bi-Ni binary system
在线阅读 下载PDF
应用于3D集成的高密度Cu/Sn微凸点键合技术 被引量:2
20
作者 独莉 宿磊 +3 位作者 陈鹏飞 张昆 廖广兰 史铁林 《半导体光电》 CAS 北大核心 2015年第3期403-407,共5页
3D-IC技术被看作是应对未来半导体产业不断增长的晶体管密度最有希望的解决方案,而微凸点键合技术是实现3D集成的关键技术之一。采用电镀工艺制作了直径为50μm、间距为130μm的高密度Cu/Sn微凸点,分析了不同预镀时间及电流密度对Cu微... 3D-IC技术被看作是应对未来半导体产业不断增长的晶体管密度最有希望的解决方案,而微凸点键合技术是实现3D集成的关键技术之一。采用电镀工艺制作了直径为50μm、间距为130μm的高密度Cu/Sn微凸点,分析了不同预镀时间及电流密度对Cu微凸点形成质量的影响,并使用倒装焊机实现了高密度Cu/Sn微凸点的键合。利用直射式X射线、分层式X射线对键合样片进行无损检测,结果表明键合对准精度高,少量微凸点边缘有锡被挤出,这是由于锡层过厚导致。观察键合面形貌,可以发现Cu和Sn结合得不够紧密。进一步对键合面金属间化合物进行能谱分析,证实存在Cu6Sn5和Cu3Sn两种物质,说明Cu6Sn5没有与Cu充分反应生成稳态产物Cu3Sn,可以通过增加键合时间、减少Sn层厚度或增加退火工艺来促进Cu3Sn的生成。 展开更多
关键词 3D集成 Cu/Sn微凸点 电镀 键合 金属间化合物
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部