Slater选举是最优化问题,也是NP-hard问题,此类问题一般被认为不存在多项式时间的算法。考虑到其求解的复杂度与回答集求解的复杂度是一致的,为此,提出一种利用回答集程序(Answer Set Programming,ASP)求解Slater选举的新方法。首先,使...Slater选举是最优化问题,也是NP-hard问题,此类问题一般被认为不存在多项式时间的算法。考虑到其求解的复杂度与回答集求解的复杂度是一致的,为此,提出一种利用回答集程序(Answer Set Programming,ASP)求解Slater选举的新方法。首先,使用饱和技术为Slater选举建立逻辑上等价的ASP模型;其次,对模型进行正确性证明;最后,调用回答集求解器DLV求解Slater选举的具体实例,并在实验结果中说明其可行性。该方法不仅可求解Slater选举问题,而且在ASP中所使用的饱和技术还为其他同类的最优化问题提供了一种新的逻辑表示途径。展开更多
In this article, we study constrained minimizers of the following variational problem ε(p):={u∈H1 inf(R3),||u||22=p} E(u),ρ〉0,where E(u) is the SchrSdinger-Poisson-Slater (SPS) energy functional E(...In this article, we study constrained minimizers of the following variational problem ε(p):={u∈H1 inf(R3),||u||22=p} E(u),ρ〉0,where E(u) is the SchrSdinger-Poisson-Slater (SPS) energy functional E(u):1/2∫R3|△u(x)|2dx-1/4∫R3∫R3u2(y)u2(x)/|x-y|dydx-1/p∫R3|u(x)∫pdx in R3,and p ∈ (2,6). We prove the existence of minimizers for the cases 2 〈 p 〈10/3, p 〉 0, and P =10/3, 0 〈 p 〈 p*, and show that e(ρ) = -∞ for the other cases, where p* = ||φ||22 and φ(x) is the unique (up to translations) positive radially symmetric solution of -△u + u = u7/3 in R3. Moreover, when e(ρ*) = -∞, the blow-up behavior of minimizers as p/p* is also analyzed rigorously.展开更多
文摘Slater选举是最优化问题,也是NP-hard问题,此类问题一般被认为不存在多项式时间的算法。考虑到其求解的复杂度与回答集求解的复杂度是一致的,为此,提出一种利用回答集程序(Answer Set Programming,ASP)求解Slater选举的新方法。首先,使用饱和技术为Slater选举建立逻辑上等价的ASP模型;其次,对模型进行正确性证明;最后,调用回答集求解器DLV求解Slater选举的具体实例,并在实验结果中说明其可行性。该方法不仅可求解Slater选举问题,而且在ASP中所使用的饱和技术还为其他同类的最优化问题提供了一种新的逻辑表示途径。
基金supported by NSFC(No.10671064)Scientific Research Fund of Hunan Provincial Education Department(No.06C516)the Xiaoxiang Funds of Hunan Normal University and the Excellent Youth Programm of Hunan Normal University(No.080640)
基金partially supported by National Natural Science Foundation of China(11671394)
文摘In this article, we study constrained minimizers of the following variational problem ε(p):={u∈H1 inf(R3),||u||22=p} E(u),ρ〉0,where E(u) is the SchrSdinger-Poisson-Slater (SPS) energy functional E(u):1/2∫R3|△u(x)|2dx-1/4∫R3∫R3u2(y)u2(x)/|x-y|dydx-1/p∫R3|u(x)∫pdx in R3,and p ∈ (2,6). We prove the existence of minimizers for the cases 2 〈 p 〈10/3, p 〉 0, and P =10/3, 0 〈 p 〈 p*, and show that e(ρ) = -∞ for the other cases, where p* = ||φ||22 and φ(x) is the unique (up to translations) positive radially symmetric solution of -△u + u = u7/3 in R3. Moreover, when e(ρ*) = -∞, the blow-up behavior of minimizers as p/p* is also analyzed rigorously.