In recent years,the application of various advanced technologies,such as digitization and informatization,has become the primary tool for innovation in education and teaching.For traditional single-chip microcomputer ...In recent years,the application of various advanced technologies,such as digitization and informatization,has become the primary tool for innovation in education and teaching.For traditional single-chip microcomputer course teaching,it is necessary to emphasize the introduction and application of high-tech innovations in its path of innovative development.This course is a typical representative of multidisciplinary teaching,involving multiple disciplines such as electronic engineering,automation,and computer science.In response to issues faced in traditional teaching,such as rigid organization of teaching content that struggles to keep pace with technological advancements,resulting in a noticeable lag in knowledge transfer,and monotonous teaching methods that fail to precisely meet the diverse learning needs of students,analyzing the innovative applications of this course under the empowerment of AI technology holds significant practical relevance.In this regard,the study relies on AI technology empowerment to analyze the application paths for the deep integration of AI technology and single-chip microcomputer courses,constructing a new teaching model to provide references for enhancing teaching quality and stimulating students’innovative potential.展开更多
In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analy...In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.展开更多
Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision u...Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value.展开更多
基金Single-Chip Microcomputer and Interface Technology Project(Project No.:SYSJ2025032)。
文摘In recent years,the application of various advanced technologies,such as digitization and informatization,has become the primary tool for innovation in education and teaching.For traditional single-chip microcomputer course teaching,it is necessary to emphasize the introduction and application of high-tech innovations in its path of innovative development.This course is a typical representative of multidisciplinary teaching,involving multiple disciplines such as electronic engineering,automation,and computer science.In response to issues faced in traditional teaching,such as rigid organization of teaching content that struggles to keep pace with technological advancements,resulting in a noticeable lag in knowledge transfer,and monotonous teaching methods that fail to precisely meet the diverse learning needs of students,analyzing the innovative applications of this course under the empowerment of AI technology holds significant practical relevance.In this regard,the study relies on AI technology empowerment to analyze the application paths for the deep integration of AI technology and single-chip microcomputer courses,constructing a new teaching model to provide references for enhancing teaching quality and stimulating students’innovative potential.
基金Single-Chip Microcomputer and Interface Technology Project(Project No.:SYSJ2025032)。
文摘In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.
基金co-supported by the National Natural Science Foundation of China(No.62103432)the China Postdoctoral Science Foundation(No.284881)the Young Talent fund of University Association for Science and Technology in Shaanxi,China(No.20210108)。
文摘Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value.