This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-lev...This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient.展开更多
The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. T...The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before.展开更多
Let L =△ + V be a SchrSdinger operator in Rd, d ≥ 3, where the nonnegative potential V belongs to the reverse HSlder class Sd. We establish the BMOL-boundedness of Riesz transforms З/ЗxiL-1/2, and give the Feffe...Let L =△ + V be a SchrSdinger operator in Rd, d ≥ 3, where the nonnegative potential V belongs to the reverse HSlder class Sd. We establish the BMOL-boundedness of Riesz transforms З/ЗxiL-1/2, and give the Fefferman-Stein type decomposition of BMOL functions.展开更多
文摘This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient.
文摘The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2007001040)
文摘Let L =△ + V be a SchrSdinger operator in Rd, d ≥ 3, where the nonnegative potential V belongs to the reverse HSlder class Sd. We establish the BMOL-boundedness of Riesz transforms З/ЗxiL-1/2, and give the Fefferman-Stein type decomposition of BMOL functions.