摘要
在R^N(N≥2)中讨论一类具时间依赖系数的半线性Schrdinger方程初值问题的L^2-适定性.在Lorentz空间中,通过Strichartz估计和解的先验估计,得到了系数零点阶数λ与临界适定指数σ之间的关系,在一定条件下证明了问题的L^2-整体适定性.
The L2-well-posedness for the initial-value problem of a semilinear SchrSdinger equations with time-dependent coefficient is studied in RN(N ≥2). Under Strichartz estimation and priori estimation for the solution in Lorentz space, the relationship between the critical powers a for the well-posedness and the order λ of the zeroes of the coefficient is obtained. And under some conditions, the L2-global well-posedness of the concerned problem is proved.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第9期180-186,共7页
Mathematics in Practice and Theory
基金
衡阳师范学院青年项目(08A27)