期刊文献+
共找到959篇文章
< 1 2 48 >
每页显示 20 50 100
Spectral matching algorithm based on nonsubsampled contourlet transform and scale-invariant feature transform 被引量:4
1
作者 Dong Liang Pu Yan +2 位作者 Ming Zhu Yizheng Fan Kui Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期453-459,共7页
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq... A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy. 展开更多
关键词 point pattern matching nonsubsampled contourlet transform scale-invariant feature transform spectral algorithm.
在线阅读 下载PDF
Active Shape Models Using Scale Invariant Feature Transform
2
作者 史勇红 戚飞虎 +1 位作者 栾红霞 吴国荣 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期713-718,共6页
A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segme... A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database. 展开更多
关键词 active shape model (ASM) deformable segmentation CHEST RADIOGRAPH scale invariant feature transform (sift) local DESCRIPTOR
在线阅读 下载PDF
Target classification using SIFT sequence scale invariants 被引量:5
3
作者 Xufeng Zhu Caiwen Ma +1 位作者 Bo Liu Xiaoqian Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期633-639,共7页
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o... On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI. 展开更多
关键词 target classification scale invariant feature transform descriptors sequence scale support vector machine
在线阅读 下载PDF
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion 被引量:6
4
作者 Huan Liu Gen-Fu Xiao +1 位作者 Yun-Lan Tan Chun-Juan Ouyang 《International Journal of Automation and computing》 EI CSCD 2019年第5期575-588,共14页
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi... Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration. 展开更多
关键词 feature fusion multi-scale circle Gaussian combined invariant MOMENT multi-direction GRAY level CO-OCCURRENCE matrix MULTI-SOURCE remote sensing image registration CONTOURLET transform
原文传递
Face recognition using SIFT features under 3D meshes 被引量:1
5
作者 张诚 谷宇章 +1 位作者 胡珂立 王营冠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1817-1825,共9页
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes... Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes. 展开更多
关键词 3D face recognition seale-invariant feature transform (sift expression OCCLUSION large pose changes 3D meshes
在线阅读 下载PDF
基于导向滤波和改进SIFT的干散货码头堆场料堆特征点提取与匹配
6
作者 张艳伟 邹东升 +1 位作者 庞利宝 钮为轩 《中国工程机械学报》 北大核心 2025年第5期834-838,844,共6页
为了实现自动化干散货码头堆场料堆体积的高精度测量,料堆三维重建的准确度和可靠性至关重要。针对干散货码头堆场复杂场景特征点提取数量少、匹配率低等问题,提出了一种基于导向滤波算法和尺度不变特征变换(SIFT)算法的联合算法。其中... 为了实现自动化干散货码头堆场料堆体积的高精度测量,料堆三维重建的准确度和可靠性至关重要。针对干散货码头堆场复杂场景特征点提取数量少、匹配率低等问题,提出了一种基于导向滤波算法和尺度不变特征变换(SIFT)算法的联合算法。其中,使用导向滤波算法来进行堆场料堆图像增强和降噪;改进尺度不变特征变换(SIFT)算法流程,使用层次聚类优化特征匹配算法,消除ratio值的影响,实现堆场料堆特征点的精确匹配。结果表明:基于导向滤波的图像预处理算法有效提高了提取的特征点质量,相较于传统图像增强方法,有效匹配对的占比提升了1.59%;改进后的SIFT匹配算法无需反复整定ratio,其最优结果与传统匹配算法相当;联合算法相较于传统算法,在特征点匹配对数量上增加了11.3%,在港口环境中显示出更高的有效性。 展开更多
关键词 干散货码头堆场 体积测量 导向滤波 聚类 尺度不变特征变换(sift)
在线阅读 下载PDF
一种改进的ASIFT算法重复匹配模式研究
7
作者 杨根新 杨阳 景志雄 《地矿测绘》 2025年第3期17-21,共5页
影像匹配是计算机视觉研究的热点。为此,该文对现有的仿射尺度不变特征变换(ASIFT)算法进行了两项改进:第一项改进是使ASIFT算法可通过图形变换匹配来匹配重复模式;第二项改进是通过更精确地估计视图之间的转换来提高匹配的精度。实验... 影像匹配是计算机视觉研究的热点。为此,该文对现有的仿射尺度不变特征变换(ASIFT)算法进行了两项改进:第一项改进是使ASIFT算法可通过图形变换匹配来匹配重复模式;第二项改进是通过更精确地估计视图之间的转换来提高匹配的精度。实验结果表明,该方法能够成功匹配如棋盘等的重复模式,在严格的仿射变换或投影下,影像点的正确匹配数量会明显增加,影像匹配精度会显著提高。 展开更多
关键词 影像匹配 重复模式 仿射变换 Asift 实验 精度 测试
在线阅读 下载PDF
Image matching algorithm based on SIFT using color and exposure information 被引量:9
8
作者 Yan Zhao Yuwei Zhai +1 位作者 Eric Dubois Shigang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期691-699,共9页
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera... Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT. 展开更多
关键词 scale invariant feature transform(sift) image matching color exposure
在线阅读 下载PDF
Study of Human Action Recognition Based on Improved Spatio-temporal Features 被引量:7
9
作者 Xiao-Fei Ji Qian-Qian Wu +1 位作者 Zhao-Jie Ju Yang-Yang Wang 《International Journal of Automation and computing》 EI CSCD 2014年第5期500-509,共10页
Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combin... Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios. 展开更多
关键词 Action recognition spatio-temporal interest points 3-dimensional scale-invariant feature transform (3D sift) positional distribution information dimension reduction
原文传递
An Approach to Parallelization of SIFT Algorithm on GPUs for Real-Time Applications 被引量:4
10
作者 Raghu Raj Prasanna Kumar Suresh Muknahallipatna John McInroy 《Journal of Computer and Communications》 2016年第17期18-50,共33页
Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible fo... Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible for single threaded im-plementation to extract local feature descriptors for high-resolution images in real time. In this paper, an approach to parallelization of the SIFT algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU). The parallel-ization design for SIFT on GPUs is divided into two stages, a) Algorithm de-sign-generic design strategies which focuses on data and b) Implementation de-sign-architecture specific design strategies which focuses on optimally using GPU resources for maximum occupancy. Increasing memory latency hiding, eliminating branches and data blocking achieve a significant decrease in aver-age computational time. Furthermore, it is observed via Paraver tools that our approach to parallelization while optimizing for maximum occupancy allows GPU to execute memory bound SIFT algorithm at optimal levels. 展开更多
关键词 scale invariant feature transform (sift) Parallel Computing GPU GPU Occupancy Portable Parallel Programming CUDA
在线阅读 下载PDF
Research on will-dimension SIFT algorithms for multi-attitude face recognition 被引量:1
11
作者 SHENG Wenshun SUN Yanwen XU Liujing 《High Technology Letters》 EI CAS 2022年第3期280-287,共8页
The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SI... The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm. 展开更多
关键词 face recognition scale invariant feature transformation(sift) dimensionality reduction principal component analysis-scale invariant feature transformation(PCA-sift)
在线阅读 下载PDF
Robust Radiometric Normalization of the near Equatorial Satellite Images Using Feature Extraction and Remote Sensing Analysis 被引量:1
12
作者 Hayder Dibs Shattri Mansor +1 位作者 Noordin Ahmad Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第2期75-89,共15页
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ... Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively. 展开更多
关键词 Relative Radiometric Normalization scale invariant feature transform Automatically Extraction Control Points Sum of Absolute Difference
在线阅读 下载PDF
基于Bag of Features模型的害虫图像分类技术研究 被引量:1
13
作者 姜祖新 赵小军 +3 位作者 王复元 盛强 谢鹏 徐擎宇 《粮食储藏》 2015年第4期28-32,共5页
将Bag of Features模型结合OpenCV开源图像库提取害虫图像的特征,然后用Kmedoids算法对其进行聚类,生成关键字,最后用AdaBoosting算法构建分类器,实验采用Pascal Voc图像库中的数据进行训练和测试,实验表明,该算法分类精度高、特征提取... 将Bag of Features模型结合OpenCV开源图像库提取害虫图像的特征,然后用Kmedoids算法对其进行聚类,生成关键字,最后用AdaBoosting算法构建分类器,实验采用Pascal Voc图像库中的数据进行训练和测试,实验表明,该算法分类精度高、特征提取速度和分类速度也比较快。 展开更多
关键词 sift特征 聚类算法 图像分类性能
在线阅读 下载PDF
基于SIFT特征的SAR图像拼接效率优化方法 被引量:2
14
作者 刘钟毓 范季夏 +2 位作者 刘峻楠 张亦宁 毛新华 《现代雷达》 北大核心 2025年第8期34-46,共13页
在条带模式合成孔径雷达(SAR)成像中,数据处理量大,通常分成多个子孔径进行处理。然而,微型无人机(mini-UAV)SAR由于其运行不稳定性,常引入较大的运动误差,这不仅导致子孔径图像形变,还使得相邻图像间的平移量难以精确估算,增加了图像... 在条带模式合成孔径雷达(SAR)成像中,数据处理量大,通常分成多个子孔径进行处理。然而,微型无人机(mini-UAV)SAR由于其运行不稳定性,常引入较大的运动误差,这不仅导致子孔径图像形变,还使得相邻图像间的平移量难以精确估算,增加了图像拼接难度。尺度不变特征变换(SIFT)算法提供的特征点能有效应对图像配准与拼接问题,但处理大数据量图像时,传统流程的效率较低。为此,文中提出了一种基于SIFT特征图像拼接的优化方法,旨在提高SAR图像配准与拼接效率。文中引入了一种基于幅值比的特征点质量评判标准,通过精选特征点,确保了匹配的准确性,有效减少了特征点数量。在此基础上,采用KD树进行特征点粗匹配,提高检索速度。此外,利用两个一维插值代替传统的二维插值,优化了仿射变换的插值效率。通过降像素图像估算仿射矩阵并校正,提高拼接计算效率且保证拼接质量。通过实验用时、配准正确率、相似度、均方误差等指标,验证了所提方法在保持拼接精度的同时,显著提高了计算效率,对mini-UAV SAR图像的快速拼接具有一定的应用价值。 展开更多
关键词 合成孔径雷达 微型无人机 图像配准与拼接 尺度不变特征变换 降像素
原文传递
基于EfficientNet和SIFT的中国画印章识别研究
15
作者 曾庆阳 万静 张昊 《北京化工大学学报(自然科学版)》 北大核心 2025年第4期74-84,共11页
为提高中国画图像印章识别的效率和准确性,提出一种基于EfficientNet和尺度不变特征变换(scale invari-ant feature transform,SIFT)的两阶段印章识别算法。在印章提取阶段,通过预处理技术优化图像质量,利用HSV(hue,saturation,value)... 为提高中国画图像印章识别的效率和准确性,提出一种基于EfficientNet和尺度不变特征变换(scale invari-ant feature transform,SIFT)的两阶段印章识别算法。在印章提取阶段,通过预处理技术优化图像质量,利用HSV(hue,saturation,value)颜色空间特征确定候选印章区域,基于EfficientNet模型提取候选区域图像特征,进行分类后获得印章图像。在印章匹配阶段,通过SIFT算法提取印章图像特征,采用最近邻匹配方法进行图像匹配,获得最终的印章信息。为验证算法的有效性,构建了包含4000张图片的印章提取数据集,以及包含14790条印章信息的标准印章数据库。选取其他常用基线模型进行对比实验,实验结果表明,在自建数据集上,所提方法印章图像提取的准确率达到95.25%,印章匹配的准确率达到98.20%,并且在处理图像旋转和尺度变化时具有较高的鲁棒性。 展开更多
关键词 印章识别 印章提取 印章匹配 EfficientNet 尺度不变特征变换(sift)
在线阅读 下载PDF
基于WMSATC-Net和SIFT的RFID标签图像去噪和定位方法
16
作者 庄笑 周迪 俞晓磊 《计算机应用》 北大核心 2025年第S2期357-362,共6页
传统的射频识别(RFID)多标签识别大多采用电磁通信方式。随着RFID多标签数的不断增加以及RFID应用环境中电磁干扰的日益复杂,传统的电磁方式实现RFID多标签定位已不能满足应用需求。因此,提出一种基于WMSATC-Net和尺度不变特征变换(SIFT... 传统的射频识别(RFID)多标签识别大多采用电磁通信方式。随着RFID多标签数的不断增加以及RFID应用环境中电磁干扰的日益复杂,传统的电磁方式实现RFID多标签定位已不能满足应用需求。因此,提出一种基于WMSATC-Net和尺度不变特征变换(SIFT)匹配的RFID标签图像去噪和定位方法 W-S-DL。首先,设计和搭建RFID多标签定位系统,并利用所搭建的系统采集RFID标签图像;其次,提出一种去噪网络WMSATC-Net,将高层视觉中的Transformer方法引入低层视觉领域,对标签图像进行去噪;随后,基于去噪图像结果,采用SIFT匹配算法进行标签识别和定位。采用2种不同的基准模型与W-S-DL进行对比实验,实验结果表明,与基准模型相比,W-S-DL模型的图像去噪效果最好。进一步的定位实验结果表明,融合WMSATC-Net去噪方法的视觉方式可以有效实现RFID多标签的高精度定位。 展开更多
关键词 射频识别 尺度不变特征变换 卷积神经网络 transformER 图像去噪
在线阅读 下载PDF
基于SIFT特征匹配的小变形初值估计研究
17
作者 董伟 毛镪 +1 位作者 张海东 施天威 《激光技术》 北大核心 2025年第5期755-763,共9页
为了克服基于尺度不变特征变换(SIFT)特征匹配的小变形初值估计受到特征点误匹配和匹配精度不确定性的影响,引入了对误匹配引起的异常值具有一定抗性的最小一乘算法和霍夫变换算法进行拟合获取变形初值。通过模拟散斑图实验检验最小一... 为了克服基于尺度不变特征变换(SIFT)特征匹配的小变形初值估计受到特征点误匹配和匹配精度不确定性的影响,引入了对误匹配引起的异常值具有一定抗性的最小一乘算法和霍夫变换算法进行拟合获取变形初值。通过模拟散斑图实验检验最小一乘算法和霍夫变换算法的小变形初值估计可靠性,与随机抽样一致性算法的结果进行了对比;并通过相似模拟实验检验初值算法真实情况下的可靠性。结果表明,在小位移情形下,最小一乘算法的位移初值标准差低于霍夫变换算法和随机抽样一致性算法,为0.0033 pixel~0.0068 pixel,且在数字图像相关方法中使用其位移初值的相关搜索平均迭代次数为3.692~4.370次;对于实验过程中散斑图出现的破损区域,最小一乘算法的位移初值和数字图像相关方法的位移测量值存在明显差值,最大值为11.80 pixel,最小值为-7.35 pixel,最小一乘算法的变形初值依然可靠,但数字图像相关方法的变形测量有失效风险。该研究为数字图像相关方法的小变形初值估计提供了一定的参考。 展开更多
关键词 图像处理 数字图像相关方法 sift特征匹配 霍夫变换 最小一乘算法 变形初值估计
在线阅读 下载PDF
基于传感数据融合与SIFT特征匹配的楼宇安防智能监控方法
18
作者 姜业栋 《科技和产业》 2025年第7期26-30,共5页
为提高安防监控结果的可靠性,实现对楼宇的智能监控,基于传感数据融合与尺度不变特征变换(SIFT)特征匹配,开展楼宇安防智能监控方法的设计研究。安装摄像头、红外探测器、震动等传感器,采集楼宇安防数据,引进加权平均法,对预处理后的数... 为提高安防监控结果的可靠性,实现对楼宇的智能监控,基于传感数据融合与尺度不变特征变换(SIFT)特征匹配,开展楼宇安防智能监控方法的设计研究。安装摄像头、红外探测器、震动等传感器,采集楼宇安防数据,引进加权平均法,对预处理后的数据进行融合与点云数据压缩;将彩色图像转换为灰度图像,提取关键点(特征点)和对应的描述符,设计基于SIFT特征匹配的楼宇安防监控图像自动拼接;在拼接后的视频帧中,使用帧间差分法识别运动目标,设定阈值以区分前景(运动目标)和背景,实现视频运动目标的跟踪与智能监控。对比实验结果表明,设计的方法实际应用效果良好,可以精准识别到监控界面中出现的所有人物,满足楼宇安防智能监控需求。 展开更多
关键词 传感数据融合 点云数据压缩 智能监控 安防 楼宇 尺度不变特征变换(sift)特征匹配
在线阅读 下载PDF
一种针对于描述子的SIFT简化方法 被引量:17
19
作者 戴金波 赵宏伟 +1 位作者 刘君玲 冯嘉 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2255-2262,共8页
由于目前的SIFT(scale invariant feature transform)特征提取算法具有较高的时间复杂度,不利于大规模的数据存储和搜索,提出一种简化的SIFT局部图像特征提取算法。改进的SIFT算法针对于描述子生成部分进行简化,将原算法中特征点描述子... 由于目前的SIFT(scale invariant feature transform)特征提取算法具有较高的时间复杂度,不利于大规模的数据存储和搜索,提出一种简化的SIFT局部图像特征提取算法。改进的SIFT算法针对于描述子生成部分进行简化,将原算法中特征点描述子的矩形区域改为圆形区域,并将RANSAC(random sample consensus)算法应用于SIFT特征匹配中,有效地剔除错误匹配点。采用K.Mikolajczyk的衡量方法,即查全率和错误率进行评估。实验结果显示,算法在旋转、光照、视角变化等情况下都有很好的匹配效果,并且降低了时间复杂度。 展开更多
关键词 sift(scale invariant feature transform) 视觉不变量 RANSAC(random SAMPLE consensus)
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部