期刊文献+

基于导向滤波和改进SIFT的干散货码头堆场料堆特征点提取与匹配

Feature point extraction and matching for bulk solid stockpiles in dry bulk cargo terminals based on guided filtering and improved SIFT
在线阅读 下载PDF
导出
摘要 为了实现自动化干散货码头堆场料堆体积的高精度测量,料堆三维重建的准确度和可靠性至关重要。针对干散货码头堆场复杂场景特征点提取数量少、匹配率低等问题,提出了一种基于导向滤波算法和尺度不变特征变换(SIFT)算法的联合算法。其中,使用导向滤波算法来进行堆场料堆图像增强和降噪;改进尺度不变特征变换(SIFT)算法流程,使用层次聚类优化特征匹配算法,消除ratio值的影响,实现堆场料堆特征点的精确匹配。结果表明:基于导向滤波的图像预处理算法有效提高了提取的特征点质量,相较于传统图像增强方法,有效匹配对的占比提升了1.59%;改进后的SIFT匹配算法无需反复整定ratio,其最优结果与传统匹配算法相当;联合算法相较于传统算法,在特征点匹配对数量上增加了11.3%,在港口环境中显示出更高的有效性。 To achieve high-precision measurement of bulk solid stockpile volume in automated dry bulk cargo terminals,the accuracy and reliability of 3D reconstruction of stockpiles are crucial.Addressing the issues of limited feature point extraction and low matching rates in complex scenes of dry bulk cargo terminals,a combined algorithm based on guided filtering and scale-invariant feature transform(SIFT)is proposed.The guided filtering algorithm is used for image enhancement and denoising during the stockpile image preprocessing.The SIFT algorithm is improved by optimizing the feature matching process through hierarchical clustering,for eliminating the influence of the“ratio”and enabling precise matching of feature points in the stockpile.The results show that the image preprocessing algorithm based on guided filtering can effectively improve the quality of the extracted feature points,and the proportion of effective matching pairs is increased by 1.59%compared with the traditional method.The improved SIFT matching algorithm eliminates the need for repeated adjustments to the“ratio”,while achieving comparable optimal results to traditional matching algorithms.When the algorithms are used together,the number of feature pairs increases by 11.3%compared with the traditional algorithm,which is more effective in the port.
作者 张艳伟 邹东升 庞利宝 钮为轩 ZHANG Yanwei;ZOU Dongsheng;PANG Libao;NIU Weixuan(School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,Hubei,China;Wuhan Hangke Logistics Company Limited,Wuhan 430012,Hubei,China)
出处 《中国工程机械学报》 北大核心 2025年第5期834-838,844,共6页 Chinese Journal of Construction Machinery
基金 湖北省科技计划重点研发专项资助项目(2023BAB073)。
关键词 干散货码头堆场 体积测量 导向滤波 聚类 尺度不变特征变换(SIFT) dry bulk terminal yard volume measurement guided filtering cluster scale-invariant feature transform(SIFT)
  • 相关文献

参考文献10

二级参考文献81

  • 1李文达,闫启明,张尚弘,王龙,刘大为.基于无人机和SfM的地貌数据采集精度影响研究[J].应用基础与工程科学学报,2019,37(6):1225-1234. 被引量:13
  • 2熊友辉,李培生,邹显宏,蒋泰毅.便携式激光盘煤系统原理及应用[J].中国电力,2003,36(6):48-51. 被引量:8
  • 3章炜.机器视觉技术发展及其工业应用[J].红外,2006,27(2):11-17. 被引量:119
  • 4Nayar S K, Narasimhan S G. Vision in bad weather. In:Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. 820-827.
  • 5Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA:IEEE, 2000. 598-605.
  • 6Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6):713-724.
  • 7Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3):511-525.
  • 8Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In:Proceedings of the 2005 SPIE 5888, Polarization Science and Remote Sensing II. San Diego, USA:SPIE, 2005. 36-45.
  • 9Tan R T. Visibility in bad weather from a single image. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2008. 1-8.
  • 10Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3):Article No. 72.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部