SAUR(SMALL AUXIN UP RNA)基因家族是促进下胚轴伸长的重要下游基因,然而在高温诱导的下胚轴伸长中SAURs受调控的分子机制尚有很多不明之处。热形态建成被定义为高等植物在最适温度和逆境高温之间的温和高温范围内发生的一系列形态变化...SAUR(SMALL AUXIN UP RNA)基因家族是促进下胚轴伸长的重要下游基因,然而在高温诱导的下胚轴伸长中SAURs受调控的分子机制尚有很多不明之处。热形态建成被定义为高等植物在最适温度和逆境高温之间的温和高温范围内发生的一系列形态变化。其中,高温诱导的下胚轴伸长是研究最为透彻的一个。该研究以拟南芥Col野生型、hy5突变体、35 S::HY5-HA/Col过表达植物和烟草为材料,采用抑制剂NPA处理实验、定量RT-PCR、染色质免疫共沉淀和双荧光素酶报告基因检测方法探索了高温调控SAUR1/2/3/4的分子机制。结果表明:(1)热形态建成信号转导通路中生长素处于HY5(ELONGATED HYPOCOTYL 5)的下游。(2)在20℃和29℃中,HY5抑制了SAUR1/2/3/4的转录。(3)在常温和高温中,HY5与SAUR1/2/3/4的启动子区染色质含有E-box的部分结合且这些结合被高温所抑制。(4)HY5对SAUR1/2/3/4的调控依然需要生长素的参与。综上认为,高温通过影响HY5与SAUR1/2/3/4启动子染色质的结合强度来调控这4个基因的转录,并且此调控过程需要生长素。该研究结果为高温调控下胚轴伸长下游基因的分子机制提供了新的见解。展开更多
Auxin plays a crucial role in all aspects of plant growth and development.Auxin can induce the rapid and efficient expression of some genes,which are named auxin early response genes(AERGs),mainly including the three ...Auxin plays a crucial role in all aspects of plant growth and development.Auxin can induce the rapid and efficient expression of some genes,which are named auxin early response genes(AERGs),mainly including the three families:auxin/indole-3-acetic acid(Aux/IAA),Gretchen Hagen 3(GH3),and small auxin-up RNA(SAUR).Aux/IAA encodes the Aux/IAA protein,which is a negative regulator of auxin response.Aux/IAA and auxin response factor(ARF)form a heterodimer and participate in a variety of physiological processes through classical or non-classical auxin signaling pathways.The GH3 encodes auxin amide synthetase,which catalyzes the binding of auxin to acyl-containing small molecule substrates(such as amino acids and jasmonic acid),and regulates plant growth and stresses by regulating auxin homeostasis.SAURs is a class of small auxin up-regulated RNAs.SAUR response to auxin is complex,and the process may occur at the transcriptional,post-transcriptional and protein levels.With the development of multi-omics,significant progress has been made in the study of Aux/IAA,GH3,and SAUR genes,but there are still many unknowns.This review offers insight into the characteristics of Aux/IAA,GH3,and SAUR gene families,and their roles in roots,hypocotyls,leaves,leaf inclinations,flowers,seed development,stress response,and phytohormone crosstalk,and provides clues for future research on phytohormone signaling and the molecular design breeding of crops.展开更多
基金supported by the National Natural Science Foundation of China(32060451 and 32372073)the Natural Science Foundation of Inner Mongolia(2022ZD11)+1 种基金the Science-Technology Plan Project of Inner Mongolia(2023YFDZ0007)Applied Technology Research and Development Foundation of Inner Mongolia(2021PT0001).
文摘Auxin plays a crucial role in all aspects of plant growth and development.Auxin can induce the rapid and efficient expression of some genes,which are named auxin early response genes(AERGs),mainly including the three families:auxin/indole-3-acetic acid(Aux/IAA),Gretchen Hagen 3(GH3),and small auxin-up RNA(SAUR).Aux/IAA encodes the Aux/IAA protein,which is a negative regulator of auxin response.Aux/IAA and auxin response factor(ARF)form a heterodimer and participate in a variety of physiological processes through classical or non-classical auxin signaling pathways.The GH3 encodes auxin amide synthetase,which catalyzes the binding of auxin to acyl-containing small molecule substrates(such as amino acids and jasmonic acid),and regulates plant growth and stresses by regulating auxin homeostasis.SAURs is a class of small auxin up-regulated RNAs.SAUR response to auxin is complex,and the process may occur at the transcriptional,post-transcriptional and protein levels.With the development of multi-omics,significant progress has been made in the study of Aux/IAA,GH3,and SAUR genes,but there are still many unknowns.This review offers insight into the characteristics of Aux/IAA,GH3,and SAUR gene families,and their roles in roots,hypocotyls,leaves,leaf inclinations,flowers,seed development,stress response,and phytohormone crosstalk,and provides clues for future research on phytohormone signaling and the molecular design breeding of crops.