Mitochondria play a crucial role in plant growth,fertility,and adaptation.Sugarcane(Saccharum hybrids)represents the world’s primary sugar and energy crop,while S.spontaneum and S.arundinaceum serve as valuable paren...Mitochondria play a crucial role in plant growth,fertility,and adaptation.Sugarcane(Saccharum hybrids)represents the world’s primary sugar and energy crop,while S.spontaneum and S.arundinaceum serve as valuable parental germplasm.Despite their importance,limited research exists regarding the mitochondrial genomes of sugarcane and related species.This study presents the assembly of mitogenomes from one S.arundinaceum,one S.spontaneum,and five sugarcane cultivars.Analysis revealed that these mitogenomes,encoding 33 protein-coding genes(PCGs),ranged from 445,578 to 533,662 bp,with GC content between 43.43-43.82%.The primary structures of S.arundinaceum consisted of three small rings,while S.spontaneum exhibited one ring and one linear structure,and sugarcane displayed two rings;multiple potential conformations emerged due to repeat-mediated recombination.Additionally,this research developed an intron marker SAnad4i3 capable of species differentiation.The analysis identified between 540 and 581 C to U RNA editing sites in the PCGs,with six RNA editing sites linked to start or stop codon creation in S.arundinaceum,and five sites each in S.spontaneum and sugarcane hybrids.Significantly,30-37 fragments homologous to chloroplast DNA were identified,with S.spontaneum containing the highest number.These mitogenomes appear to have undergone substantial genomic reorganization and gene transfer events throughout evolution,including the loss of eight PCGs.This comprehensive study illuminates the genetic diversity and complexity of the Saccharum complex,establishing a foundation for future germplasm identification and evolutionary research.展开更多
This paper reports the development of the first SSR marker-based sugarcane (Saccharum spp.) molecular identity database in the world. Since 2005, 1,025 sugarcane clones were genotyped, including 811 Louisiana, 45 Flor...This paper reports the development of the first SSR marker-based sugarcane (Saccharum spp.) molecular identity database in the world. Since 2005, 1,025 sugarcane clones were genotyped, including 811 Louisiana, 45 Florida, 39 Texas, 130 foreign, and eight consultant/seed company clones. Genotyping was done on a fluorescence-capillary electrophoresis detection platform involving 21 highly polymorphic SSR markers that could potentially amplify 144 distinctive DNA fragments. Genotyping data were processed with the GeneMapper? software to reveal electrophoregrams that were manually checked against the 144 fragments. The presence (A) or absence (C) of these 144 fragments in any sugarcane clone was recorded in an affixed sequence order as a DNAMAN? file to represent its molecular identity being achieved into a local molecular identity database. The molecular identity database has been updated annually by continued genotyping of newly assigned sugarcane clones. The database provides molecular descriptions for new cultivar registration articles, enables sugarcane breeders to identify mis-labeled sugarcane clones in crossing programs and determine the paternity of cross progeny, and ensures the desired cultivars are grown in farmers’ fields.展开更多
Gamma ray-induced in vitro mutagenesis and selection for salt(NaC l) tolerance were investigated in sugarcane(Saccharum officinarum L.). Embryogenic callus cultures were irradiated(10 to 80 Gy) and subjected to in vit...Gamma ray-induced in vitro mutagenesis and selection for salt(NaC l) tolerance were investigated in sugarcane(Saccharum officinarum L.). Embryogenic callus cultures were irradiated(10 to 80 Gy) and subjected to in vitro selection by exposure of irradiated callus to NaC l(0, 50, 100,150, 200, and 250 mmol L-1). Increasing NaC l concentrations resulted in growth reduction and increased membrane damage. Salt-selected callus lines were characterized by the accumulation of proline, glycine betaine, and Na+and K+concentration. Higher accumulation of proline and glycine betaine was observed in NaC l stressed callus irradiated at 20 Gy. Na+concentration increased and K+concentration decreased with increasing salt level. Irradiated callus showed50–60% regeneration under NaC l stress, and in vitro-regenerated plants were acclimatized in the greenhouse, with 80–85% survival. A total of 138 irradiated and salt-selected selections were grown to maturity and their agronomic performance was evaluated under normal and saline conditions. Of these, 18 mutant clones were characterized for different agro-morphological characters and some of the mutant clones exhibited improved sugar yield with increased Brix%,number of millable canes, and yield. The result suggest that radiation-induced mutagenesis offers an effective way to enhance genetic variation in sugarcane.展开更多
Sugarcane is a prominent source of sugar and ethanol production.Genetic analysis for trait improvement of sugarcane is greatly hindered by its complex genome,long breeding cycle,and recalcitrance to genetic transforma...Sugarcane is a prominent source of sugar and ethanol production.Genetic analysis for trait improvement of sugarcane is greatly hindered by its complex genome,long breeding cycle,and recalcitrance to genetic transformation.The protoplast-based transient transformation system is a versatile and convenient tool for in vivo functional gene analysis;however,quick and effective transformation systems are still lacking for sugarcane.Here,we developed an efficient protoplast-based transformation system by optimizing conditions of protoplasts isolation and PEG-mediated transformation in S.spontaneum.The yield of viable protoplasts was approximately 1.26×107 per gram of leaf material,and the transformation efficiency of 80.19%could be achieved under the optimized condition.Furthermore,using this approach,the nuclear localization of an ABI5-like bZIPs transcription factor was validated,and the promoter activity of several putative DNase I hypersensitive sites(DHSs)was assessed.The results indicated this system can be conveniently applied to protein subcellular localization and promoter activity assays.A highly efficient S.spontaneum mesophyll cell protoplast isolation and transient transformation method was developed,and it shall be suitable for in vivo functional gene analysis in sugarcane.展开更多
[Objectives]The genetic characteristics of wild germplasm resources of Saccharum spontaneum L.were further investigated to provide a scientific theoretical basis for the improved hybridization of sugarcane varieties.[...[Objectives]The genetic characteristics of wild germplasm resources of Saccharum spontaneum L.were further investigated to provide a scientific theoretical basis for the improved hybridization of sugarcane varieties.[Methods]The first flowering date data of 112 wild resources were statistically analyzed by broad heritability for 3 consecutive years,and pollen quantity and yield were investigated to provide reference for hybridization.[Results]The broad heritability of the first flowering date of S.spontaneum was 0.079.The differences in the first flowering date between the S.spontaneum resources were in the range of 4-49 d,with an average of 13.65 d.The inter-annual changes within 20 d accounted for 90 %,and only 4.5% exceeded 30 d.The first flowering dates of some S.spontaneum resources were obviously postponed after being treated.[Conclusions]In the hybridization season,the hybridization plan must be adjusted according to the actual situation of the flowering period to make full use of it.展开更多
Sugarcane has a large,complex,polyploid genome that has hindered the progress of genomic research and molecular marker-assisted selection.The user-friendly SSR markers have attracted considerable attention owing to th...Sugarcane has a large,complex,polyploid genome that has hindered the progress of genomic research and molecular marker-assisted selection.The user-friendly SSR markers have attracted considerable attention owing to their ideal genetic attributes.However,these markers were not characterized and developed at the genome-wide scale due to the previously lacking high-quality chromosome-level assembled sugarcane genomes.In this present study,744305and 361638 candidate SSRs were identified from the genomes of S.officinarum and S.spontaneum,respectively.We verified the reliability of the predicted SSRs by using 1200 interspecific SSR primer pairs to detect polymorphisms among 11 representative accessions of Saccharum,including S.spontaneum,S.officinarum,S.robustum,and modern sugarcane hybrid.The results showed that 660 SSR markers displayed interspecific polymorphisms among these accessions.Furthermore,100 SSRs were randomly selected to detect the genetic diversity for 39 representative Saccharum accessions.A total of 320 alleles were generated using 100 polymorphic primers,with each marker ranging from two to seven alleles.The genetic diversity analysis revealed that these accessions were distributed in four main groups,including group I(14 S.spontaneum accessions),group II(two S.officinarum accessions),group III(18 modern sugarcane hybrid accessions),and group IV(five S.robustum accessions).Experimental verification supported the reliability of the SSR markers based on genome-wide predictions.The development of a large number of SSR markers based on wet experiments is valuable for genetic studies,including genetic linkage maps,comparative genome analysis,genome-wide association studies,and marker-assisted selection in Saccharum.展开更多
Brix weight per stool (BW) of sugarcane is a complex trait, which is the final product of a combination of many components. Diallel cross experiments were conducted during a period of two years for BW and its five com...Brix weight per stool (BW) of sugarcane is a complex trait, which is the final product of a combination of many components. Diallel cross experiments were conducted during a period of two years for BW and its five component traits, in- cluding stalk diameter (SD), stalk length (SL), stalk number (SN), stalk weight (SW), and brix scale (BS) of sugarcane. Phenotypic data of all the six traits were analyzed by mixed linear model and their phenotype variances were portioned into additive (A), dominance (D), additive×environment interaction (AE) and dominance×environment interaction (DE) effects, and the correlations of A, D, AE and DE effects between BW and its components were estimated. Conditional analysis was employed to investigate the contribution of the components traits to the variances of A, D, AE and DE effects of BW. It was observed that the heritabilities of BW were significantly attributed to A, D and DE by 23.9%, 30.9% and 28.5%, respectively. The variance of A effect for BW was significantly affected by SL, SN and BS by 25.3%, 93.7% and 17.4%, respectively. The variances of D and DE effects for BW were also significantly influenced by all the five components by 5.1%~85.5%. These determinants might be helpful in sugarcane breeding and provide valuable information for multiple-trait improvement of BW.展开更多
基金supported by the Chinese Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center(CATASCXTD202402)the Science and Technology Major Project of Guangxi,China(Guike AA23073001)+3 种基金the National Key Research and Development Program of China(2022YFD2301100)the Project of State Key Laboratory of Tropical Crop Breeding,China(NKLTCBCXTD24,NKLTCBHZ04,NKLTCB-RC202401 and SKLTCBYWF202504)the China Agriculture Research System of MOF and MARA(CARS-17)the Scientific Research Start-up Fund for High-level Introduced Talents of Henan Institute of Science and Technology,China(103020224001/073)。
文摘Mitochondria play a crucial role in plant growth,fertility,and adaptation.Sugarcane(Saccharum hybrids)represents the world’s primary sugar and energy crop,while S.spontaneum and S.arundinaceum serve as valuable parental germplasm.Despite their importance,limited research exists regarding the mitochondrial genomes of sugarcane and related species.This study presents the assembly of mitogenomes from one S.arundinaceum,one S.spontaneum,and five sugarcane cultivars.Analysis revealed that these mitogenomes,encoding 33 protein-coding genes(PCGs),ranged from 445,578 to 533,662 bp,with GC content between 43.43-43.82%.The primary structures of S.arundinaceum consisted of three small rings,while S.spontaneum exhibited one ring and one linear structure,and sugarcane displayed two rings;multiple potential conformations emerged due to repeat-mediated recombination.Additionally,this research developed an intron marker SAnad4i3 capable of species differentiation.The analysis identified between 540 and 581 C to U RNA editing sites in the PCGs,with six RNA editing sites linked to start or stop codon creation in S.arundinaceum,and five sites each in S.spontaneum and sugarcane hybrids.Significantly,30-37 fragments homologous to chloroplast DNA were identified,with S.spontaneum containing the highest number.These mitogenomes appear to have undergone substantial genomic reorganization and gene transfer events throughout evolution,including the loss of eight PCGs.This comprehensive study illuminates the genetic diversity and complexity of the Saccharum complex,establishing a foundation for future germplasm identification and evolutionary research.
文摘This paper reports the development of the first SSR marker-based sugarcane (Saccharum spp.) molecular identity database in the world. Since 2005, 1,025 sugarcane clones were genotyped, including 811 Louisiana, 45 Florida, 39 Texas, 130 foreign, and eight consultant/seed company clones. Genotyping was done on a fluorescence-capillary electrophoresis detection platform involving 21 highly polymorphic SSR markers that could potentially amplify 144 distinctive DNA fragments. Genotyping data were processed with the GeneMapper? software to reveal electrophoregrams that were manually checked against the 144 fragments. The presence (A) or absence (C) of these 144 fragments in any sugarcane clone was recorded in an affixed sequence order as a DNAMAN? file to represent its molecular identity being achieved into a local molecular identity database. The molecular identity database has been updated annually by continued genotyping of newly assigned sugarcane clones. The database provides molecular descriptions for new cultivar registration articles, enables sugarcane breeders to identify mis-labeled sugarcane clones in crossing programs and determine the paternity of cross progeny, and ensures the desired cultivars are grown in farmers’ fields.
基金partial financial support from the Department of Atomic Energy - Board of Research in Nuclear Sciences (DAE-BRNS) project grant sanction No. 2009/ 37/51/BRNS
文摘Gamma ray-induced in vitro mutagenesis and selection for salt(NaC l) tolerance were investigated in sugarcane(Saccharum officinarum L.). Embryogenic callus cultures were irradiated(10 to 80 Gy) and subjected to in vitro selection by exposure of irradiated callus to NaC l(0, 50, 100,150, 200, and 250 mmol L-1). Increasing NaC l concentrations resulted in growth reduction and increased membrane damage. Salt-selected callus lines were characterized by the accumulation of proline, glycine betaine, and Na+and K+concentration. Higher accumulation of proline and glycine betaine was observed in NaC l stressed callus irradiated at 20 Gy. Na+concentration increased and K+concentration decreased with increasing salt level. Irradiated callus showed50–60% regeneration under NaC l stress, and in vitro-regenerated plants were acclimatized in the greenhouse, with 80–85% survival. A total of 138 irradiated and salt-selected selections were grown to maturity and their agronomic performance was evaluated under normal and saline conditions. Of these, 18 mutant clones were characterized for different agro-morphological characters and some of the mutant clones exhibited improved sugar yield with increased Brix%,number of millable canes, and yield. The result suggest that radiation-induced mutagenesis offers an effective way to enhance genetic variation in sugarcane.
基金funded by the National Natural Science Foundation of China(3190020451 and 31771862)。
文摘Sugarcane is a prominent source of sugar and ethanol production.Genetic analysis for trait improvement of sugarcane is greatly hindered by its complex genome,long breeding cycle,and recalcitrance to genetic transformation.The protoplast-based transient transformation system is a versatile and convenient tool for in vivo functional gene analysis;however,quick and effective transformation systems are still lacking for sugarcane.Here,we developed an efficient protoplast-based transformation system by optimizing conditions of protoplasts isolation and PEG-mediated transformation in S.spontaneum.The yield of viable protoplasts was approximately 1.26×107 per gram of leaf material,and the transformation efficiency of 80.19%could be achieved under the optimized condition.Furthermore,using this approach,the nuclear localization of an ABI5-like bZIPs transcription factor was validated,and the promoter activity of several putative DNase I hypersensitive sites(DHSs)was assessed.The results indicated this system can be conveniently applied to protein subcellular localization and promoter activity assays.A highly efficient S.spontaneum mesophyll cell protoplast isolation and transient transformation method was developed,and it shall be suitable for in vivo functional gene analysis in sugarcane.
基金Supported by Supported by the Earmarked Fund for China Agriculture Research System(CARS-170107)National Natural Science Foundation of China(31701488)+3 种基金NSFC General Project(31571730)Genetic Diversity Analysis and Core Germplasm Construction of Chinese Sugarcane Parents(2017A030303049)Special Fund for Construction of Innovation-Driven Development Ability of Guangdong Academy of Sciences(2017GDASCX-0105)Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery(2017B030314123)
文摘[Objectives]The genetic characteristics of wild germplasm resources of Saccharum spontaneum L.were further investigated to provide a scientific theoretical basis for the improved hybridization of sugarcane varieties.[Methods]The first flowering date data of 112 wild resources were statistically analyzed by broad heritability for 3 consecutive years,and pollen quantity and yield were investigated to provide reference for hybridization.[Results]The broad heritability of the first flowering date of S.spontaneum was 0.079.The differences in the first flowering date between the S.spontaneum resources were in the range of 4-49 d,with an average of 13.65 d.The inter-annual changes within 20 d accounted for 90 %,and only 4.5% exceeded 30 d.The first flowering dates of some S.spontaneum resources were obviously postponed after being treated.[Conclusions]In the hybridization season,the hybridization plan must be adjusted according to the actual situation of the flowering period to make full use of it.
基金supported by the National Key Research and Development Program of China(2021YFF1000101-5)the Science and Technology Planting Project of Guangdong Province,China(2019B020238001)+2 种基金the Natural Science Foundation of Fujian Province,China(2019J05066)the National Natural Science Foundation of China(41906096)the Guangdong Laboratory for Lingnan Modern Agriculture and the State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources,China。
文摘Sugarcane has a large,complex,polyploid genome that has hindered the progress of genomic research and molecular marker-assisted selection.The user-friendly SSR markers have attracted considerable attention owing to their ideal genetic attributes.However,these markers were not characterized and developed at the genome-wide scale due to the previously lacking high-quality chromosome-level assembled sugarcane genomes.In this present study,744305and 361638 candidate SSRs were identified from the genomes of S.officinarum and S.spontaneum,respectively.We verified the reliability of the predicted SSRs by using 1200 interspecific SSR primer pairs to detect polymorphisms among 11 representative accessions of Saccharum,including S.spontaneum,S.officinarum,S.robustum,and modern sugarcane hybrid.The results showed that 660 SSR markers displayed interspecific polymorphisms among these accessions.Furthermore,100 SSRs were randomly selected to detect the genetic diversity for 39 representative Saccharum accessions.A total of 320 alleles were generated using 100 polymorphic primers,with each marker ranging from two to seven alleles.The genetic diversity analysis revealed that these accessions were distributed in four main groups,including group I(14 S.spontaneum accessions),group II(two S.officinarum accessions),group III(18 modern sugarcane hybrid accessions),and group IV(five S.robustum accessions).Experimental verification supported the reliability of the SSR markers based on genome-wide predictions.The development of a large number of SSR markers based on wet experiments is valuable for genetic studies,including genetic linkage maps,comparative genome analysis,genome-wide association studies,and marker-assisted selection in Saccharum.
基金Project supported partly by the National Science and TechnologySupport Program (No. 2006BAD10A09-08), Chinathe Great Science Research Program of Guangdong Province (No. A20602),China
文摘Brix weight per stool (BW) of sugarcane is a complex trait, which is the final product of a combination of many components. Diallel cross experiments were conducted during a period of two years for BW and its five component traits, in- cluding stalk diameter (SD), stalk length (SL), stalk number (SN), stalk weight (SW), and brix scale (BS) of sugarcane. Phenotypic data of all the six traits were analyzed by mixed linear model and their phenotype variances were portioned into additive (A), dominance (D), additive×environment interaction (AE) and dominance×environment interaction (DE) effects, and the correlations of A, D, AE and DE effects between BW and its components were estimated. Conditional analysis was employed to investigate the contribution of the components traits to the variances of A, D, AE and DE effects of BW. It was observed that the heritabilities of BW were significantly attributed to A, D and DE by 23.9%, 30.9% and 28.5%, respectively. The variance of A effect for BW was significantly affected by SL, SN and BS by 25.3%, 93.7% and 17.4%, respectively. The variances of D and DE effects for BW were also significantly influenced by all the five components by 5.1%~85.5%. These determinants might be helpful in sugarcane breeding and provide valuable information for multiple-trait improvement of BW.