本文采用基于支持向量机(SVM s)的方法预测了4类含有核心启动子元件的启动子和含有CCAAT-box的启动子。4类核心启动子元件分别是DPE,BRE,TATA-box和Inr。特征提取采用基于位点权重矩阵(PWM s)的程序Promoter C lassifier进行。本文预测...本文采用基于支持向量机(SVM s)的方法预测了4类含有核心启动子元件的启动子和含有CCAAT-box的启动子。4类核心启动子元件分别是DPE,BRE,TATA-box和Inr。特征提取采用基于位点权重矩阵(PWM s)的程序Promoter C lassifier进行。本文预测结果的敏感度,确定度,以及相关系数均高于三种启动子预测方法(PromoterInspec-tor(PI),Promoter 2.0 Pred iction(PP)和Neural Network Promoter Pred iction(NNPP),使敏感度和确定度同时高于0.84,其中TATA-box预测结果可使敏感度和确定度同时高于0.95。展开更多
A substitution on an amino acid sequence can be defined as "intolerant" (non-neutral) or "tolerant" (neutral) according to whether or not it detectably alters protein phenotypes (e.g.,
The interaction between humans and machines has become an issue of concern in recent years.Besides facial expressions or gestures,speech has been evidenced as one of the foremost promising modalities for automatic emo...The interaction between humans and machines has become an issue of concern in recent years.Besides facial expressions or gestures,speech has been evidenced as one of the foremost promising modalities for automatic emotion recognition.Effective computing means to support HCI(Human-Computer Interaction)at a psychological level,allowing PCs to adjust their reactions as per human requirements.Therefore,the recognition of emotion is pivotal in High-level interactions.Each Emotion has distinctive properties that form us to recognize them.The acoustic signal produced for identical expression or sentence changes is essentially a direct result of biophysical changes,(for example,the stress instigated narrowing of the larynx)set off by emotions.This connection between acoustic cues and emotions made Speech Emotion Recognition one of the moving subjects of the emotive computing area.The most motivation behind a Speech Emotion Recognition algorithm is to observe the emotional condition of a speaker from recorded Speech signals.The results from the application of k-NN and OVA-SVM for MFCC features without and with a feature selection approach are presented in this research.The MFCC features from the audio signal were initially extracted to characterize the properties of emotional speech.Secondly,nine basic statistical measures were calculated from MFCC and 117-dimensional features were consequently obtained to train the classifiers for seven different classes(Anger,Happiness,Disgust,Fear,Sadness,Disgust,Boredom and Neutral)of emotions.Next,Classification was done in four steps.First,all the 117-features are classified using both classifiers.Second,the best classifier was found and then features were scaled to[-1,1]and classified.In the third step,the with or without feature scaling which gives better performance was derived from the results of the second step and the classification was done for each of the basic statistical measures separately.Finally,in the fourth step,the combination of statistical measures which gives better performance was derived using the forward feature selection method Experiments were carried out using k-NN with different k values and a linear OVA-based SVM classifier with different optimal values.Berlin emotional speech database for the German language was utilized for testing the planned methodology and recognition rates as high as 60%accomplished for the recognition of emotion from voice signal for the set of statistical measures(median,maximum,mean,Inter-quartile range,skewness).OVA-SVM performs better than k-NN and the use of the feature selection technique gives a high rate.展开更多
In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather t...In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather than the regular emotion classification or emotion component extraction. Since there is no open dataset for this task available, we first designed and annotated an emotion cause dataset which follows the scheme of W3 C Emotion Markup Language. We then present an emotion cause detection method by using event extraction framework,where a tree structure-based representation method is used to represent the events. Since the distribution of events is imbalanced in the training data, we propose an under-sampling-based bagging algorithm to solve this problem. Even with a limited training set, the proposed approach may still extract sufficient features for analysis by a bagging of multi-kernel based SVMs method. Evaluations show that our approach achieves an F-measure 7.04%higher than the state-of-the-art methods.展开更多
Dropout and other feature noising schemes have shown promise in controlling over-fitting by artificially corrupting the training data. Though extensive studies have been performed for generalized linear models, little...Dropout and other feature noising schemes have shown promise in controlling over-fitting by artificially corrupting the training data. Though extensive studies have been performed for generalized linear models, little has been done for support vector machines (SVMs), one of the most successful approaches for supervised learning. This paper presents dropout training for both linear SVMs and the nonlinear extension with latent representation learning. For linear SVMs, to deal with the intractable expectation of the non-smooth hinge loss under corrupting distributions, we develop an iteratively re-weighted least square (IRLS) algorithm by exploring data augmentation techniques. Our algorithm iteratively minimizes the expectation of a re- weighted least square problem, where the re-weights are analytically updated. For nonlinear latent SVMs, we con- sider learning one layer of latent representations in SVMs and extend the data augmentation technique in conjunction with first-order Taylor-expansion to deal with the intractable expected hinge loss and the nonlinearity of latent representa- tions. Finally, we apply the similar data augmentation ideas to develop a new IRLS algorithm for the expected logistic loss under corrupting distributions, and we further develop a non-linear extension of logistic regression by incorporating one layer of latent representations. Our algorithms offer insights on the connection and difference between the hinge loss and logistic loss in dropout training. Empirical results on several real datasets demonstrate the effectiveness of dropout training on significantly boosting the classification accuracy of both linear and nonlinear SVMs.展开更多
文摘本文采用基于支持向量机(SVM s)的方法预测了4类含有核心启动子元件的启动子和含有CCAAT-box的启动子。4类核心启动子元件分别是DPE,BRE,TATA-box和Inr。特征提取采用基于位点权重矩阵(PWM s)的程序Promoter C lassifier进行。本文预测结果的敏感度,确定度,以及相关系数均高于三种启动子预测方法(PromoterInspec-tor(PI),Promoter 2.0 Pred iction(PP)和Neural Network Promoter Pred iction(NNPP),使敏感度和确定度同时高于0.84,其中TATA-box预测结果可使敏感度和确定度同时高于0.95。
基金supported by the National Natural Science Foundation of China (30870827)
文摘A substitution on an amino acid sequence can be defined as "intolerant" (non-neutral) or "tolerant" (neutral) according to whether or not it detectably alters protein phenotypes (e.g.,
文摘The interaction between humans and machines has become an issue of concern in recent years.Besides facial expressions or gestures,speech has been evidenced as one of the foremost promising modalities for automatic emotion recognition.Effective computing means to support HCI(Human-Computer Interaction)at a psychological level,allowing PCs to adjust their reactions as per human requirements.Therefore,the recognition of emotion is pivotal in High-level interactions.Each Emotion has distinctive properties that form us to recognize them.The acoustic signal produced for identical expression or sentence changes is essentially a direct result of biophysical changes,(for example,the stress instigated narrowing of the larynx)set off by emotions.This connection between acoustic cues and emotions made Speech Emotion Recognition one of the moving subjects of the emotive computing area.The most motivation behind a Speech Emotion Recognition algorithm is to observe the emotional condition of a speaker from recorded Speech signals.The results from the application of k-NN and OVA-SVM for MFCC features without and with a feature selection approach are presented in this research.The MFCC features from the audio signal were initially extracted to characterize the properties of emotional speech.Secondly,nine basic statistical measures were calculated from MFCC and 117-dimensional features were consequently obtained to train the classifiers for seven different classes(Anger,Happiness,Disgust,Fear,Sadness,Disgust,Boredom and Neutral)of emotions.Next,Classification was done in four steps.First,all the 117-features are classified using both classifiers.Second,the best classifier was found and then features were scaled to[-1,1]and classified.In the third step,the with or without feature scaling which gives better performance was derived from the results of the second step and the classification was done for each of the basic statistical measures separately.Finally,in the fourth step,the combination of statistical measures which gives better performance was derived using the forward feature selection method Experiments were carried out using k-NN with different k values and a linear OVA-based SVM classifier with different optimal values.Berlin emotional speech database for the German language was utilized for testing the planned methodology and recognition rates as high as 60%accomplished for the recognition of emotion from voice signal for the set of statistical measures(median,maximum,mean,Inter-quartile range,skewness).OVA-SVM performs better than k-NN and the use of the feature selection technique gives a high rate.
基金supported by the National Natural Science Foundation of China(Nos.61370165,U1636103,and 61632011)Shenzhen Foundational Research Funding(Nos.JCYJ20150625142543470 and JCYJ20170307150024907)Guangdong Provincial Engineering Technology Research Center for Data Science(No.2016KF09)
文摘In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather than the regular emotion classification or emotion component extraction. Since there is no open dataset for this task available, we first designed and annotated an emotion cause dataset which follows the scheme of W3 C Emotion Markup Language. We then present an emotion cause detection method by using event extraction framework,where a tree structure-based representation method is used to represent the events. Since the distribution of events is imbalanced in the training data, we propose an under-sampling-based bagging algorithm to solve this problem. Even with a limited training set, the proposed approach may still extract sufficient features for analysis by a bagging of multi-kernel based SVMs method. Evaluations show that our approach achieves an F-measure 7.04%higher than the state-of-the-art methods.
文摘Dropout and other feature noising schemes have shown promise in controlling over-fitting by artificially corrupting the training data. Though extensive studies have been performed for generalized linear models, little has been done for support vector machines (SVMs), one of the most successful approaches for supervised learning. This paper presents dropout training for both linear SVMs and the nonlinear extension with latent representation learning. For linear SVMs, to deal with the intractable expectation of the non-smooth hinge loss under corrupting distributions, we develop an iteratively re-weighted least square (IRLS) algorithm by exploring data augmentation techniques. Our algorithm iteratively minimizes the expectation of a re- weighted least square problem, where the re-weights are analytically updated. For nonlinear latent SVMs, we con- sider learning one layer of latent representations in SVMs and extend the data augmentation technique in conjunction with first-order Taylor-expansion to deal with the intractable expected hinge loss and the nonlinearity of latent representa- tions. Finally, we apply the similar data augmentation ideas to develop a new IRLS algorithm for the expected logistic loss under corrupting distributions, and we further develop a non-linear extension of logistic regression by incorporating one layer of latent representations. Our algorithms offer insights on the connection and difference between the hinge loss and logistic loss in dropout training. Empirical results on several real datasets demonstrate the effectiveness of dropout training on significantly boosting the classification accuracy of both linear and nonlinear SVMs.