In this article, an appropriate strategy for registration of correspondent points in the stereo-pairs of Chang’E-1 lunar mission has been introduced. It consists of area-based method and feature-based method as two s...In this article, an appropriate strategy for registration of correspondent points in the stereo-pairs of Chang’E-1 lunar mission has been introduced. It consists of area-based method and feature-based method as two steps. Firstly, one subimage was extracted from nadir image as reference image. Making use of area-based method, another subimage which is called target image can be obtained from backward or forward image overlapping the same region of lunar surface with reference image. Secondly, feature points of each subimage can be extracted by SIFT (scale invariant feature transform) algorithm. Lastly, for each feature point given in reference image, the position of correspondence in target image can be estimated according to the parameters of Chang’E-1 lunar orbiter. In contrast to standard SIFT matching algorithm, the method proposed in this article can narrow the search space and accelerate the speed of computation while achieving reduction of the percentage of false registration.展开更多
A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algo...A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.展开更多
A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, ima...A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, image median filtering is used to eliminate image noise. Then, according to the characteristics of the target satellite, image map is used to extract the middle part of the target satel- lite. At last, the feature match point under the SIFT algorithm is extracted, and the three-dimension- al position and orientation are calculated. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The experimental result shows that the al- gorithm works well and the maximum relative error is within 0. 02 m and 2.5 o展开更多
The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching mor...The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching more points, high matching accuracy, no repealed points and higher advantage of matching efficiency based on keeping the basic characteristics of SIFT algorithm unchanged, and provides precise matching point to generate precise image stitching and other related fields of the follow-up product. At the same time, this method was applied to the layout optimization and achieved good results.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible fo...Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible for single threaded im-plementation to extract local feature descriptors for high-resolution images in real time. In this paper, an approach to parallelization of the SIFT algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU). The parallel-ization design for SIFT on GPUs is divided into two stages, a) Algorithm de-sign-generic design strategies which focuses on data and b) Implementation de-sign-architecture specific design strategies which focuses on optimally using GPU resources for maximum occupancy. Increasing memory latency hiding, eliminating branches and data blocking achieve a significant decrease in aver-age computational time. Furthermore, it is observed via Paraver tools that our approach to parallelization while optimizing for maximum occupancy allows GPU to execute memory bound SIFT algorithm at optimal levels.展开更多
The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SI...The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.展开更多
基金supported by the Science and Technology Development Fund of Macao(Nos.004/2011/A1)the National Natural Science Fundation of China(No.61272364)
文摘In this article, an appropriate strategy for registration of correspondent points in the stereo-pairs of Chang’E-1 lunar mission has been introduced. It consists of area-based method and feature-based method as two steps. Firstly, one subimage was extracted from nadir image as reference image. Making use of area-based method, another subimage which is called target image can be obtained from backward or forward image overlapping the same region of lunar surface with reference image. Secondly, feature points of each subimage can be extracted by SIFT (scale invariant feature transform) algorithm. Lastly, for each feature point given in reference image, the position of correspondence in target image can be estimated according to the parameters of Chang’E-1 lunar orbiter. In contrast to standard SIFT matching algorithm, the method proposed in this article can narrow the search space and accelerate the speed of computation while achieving reduction of the percentage of false registration.
文摘A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.
文摘A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, image median filtering is used to eliminate image noise. Then, according to the characteristics of the target satellite, image map is used to extract the middle part of the target satel- lite. At last, the feature match point under the SIFT algorithm is extracted, and the three-dimension- al position and orientation are calculated. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The experimental result shows that the al- gorithm works well and the maximum relative error is within 0. 02 m and 2.5 o
文摘The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching more points, high matching accuracy, no repealed points and higher advantage of matching efficiency based on keeping the basic characteristics of SIFT algorithm unchanged, and provides precise matching point to generate precise image stitching and other related fields of the follow-up product. At the same time, this method was applied to the layout optimization and achieved good results.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
文摘Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible for single threaded im-plementation to extract local feature descriptors for high-resolution images in real time. In this paper, an approach to parallelization of the SIFT algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU). The parallel-ization design for SIFT on GPUs is divided into two stages, a) Algorithm de-sign-generic design strategies which focuses on data and b) Implementation de-sign-architecture specific design strategies which focuses on optimally using GPU resources for maximum occupancy. Increasing memory latency hiding, eliminating branches and data blocking achieve a significant decrease in aver-age computational time. Furthermore, it is observed via Paraver tools that our approach to parallelization while optimizing for maximum occupancy allows GPU to execute memory bound SIFT algorithm at optimal levels.
基金Supported by the National Natural Science Foundation of China (No.61571222)the Natural Science Research Program of Higher Education Jiangsu Province (No.19KJD520005)+1 种基金Qing Lan Project of Jiangsu Province (Su Teacher’s Letter 2021 No.11)Jiangsu Graduate Scientific Research Innovation Program (No.KYCX21_1944)。
文摘The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.