Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,a...Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.展开更多
Solid-state lithium-ion batteries(SSLIBs) offer significant advantages over traditional liquid-electrolytebased batteries,including improved safety,higher energy density,and better thermal stability.Among various anod...Solid-state lithium-ion batteries(SSLIBs) offer significant advantages over traditional liquid-electrolytebased batteries,including improved safety,higher energy density,and better thermal stability.Among various anode materials,silicon(Si)-based anodes have attracted significant attention due to their ultrahigh theoretical capacity(~4200 mAh/g) and abundant resources.However,widespread adoption of Si-based anodes in SSLIBs is still restricted by some critical challenges such as severe volume expansion,low electronic and ionic conductivity,high interfacial impedance,and low initial Coulombic efficiency(ICE).This review mainly focuses on the design strategies of Si-based anode for SSLIBs at the material,electrode and cell levels including nanostructuring,Si alloys,Si-carbon composites,conductive additives,advanced binder,external pressure,electrolyte infiltration,and prelithiation.The insights provided here aim to inspire future research and accelerate commercialization of high-performance Si-based anodes in next-generation SSLIBs.展开更多
To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si parti...To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles.展开更多
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ...To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.展开更多
The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated t...The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated to assess erosion depth,microstructure,phase migrations,and pore structure in various tunnel lining cement-based materials.Additionally,Ca^(2+)leaching was analyzed,and impact of Ca/Si molar ratio in hydration products on erosion resistance was discussed by thermodynamic calculations.The results indicate that carbonated water erosion caused rough and porous surface on specimens,with reduced portlandite and CaCO_(3) content,increased porosity,and an enlargement of pore size.The thermodynamic calculations indicate that the erosion is spontaneous,driven by physical dissolution and chemical reactions dominated by Gibbs free energy.And the erosion reactions proceed more spontaneously and extensively when Ca/Si molar ratio in hydration products was higher.Therefore,cement-based materials with higher portlandite content exhibit weaker erosion resistance.Model-building concrete,with C-S-H gel and portlandite as primary hydration products,has greater erosion susceptibility than shotcrete with ettringite as main hydration product.Moreover,adding silicon-rich mineral admixtures can enhance the erosion resistance.This research offers theory and tech insights to boost cement-based material resistance against carbonated water erosion in karst tunnel engineering.展开更多
The effect of Mg/Si mass ratio on the microstructure and mechanical properties of Al-Mg-Si cast aluminum alloys under sub-rapid solidification conditions was investigated.This study utilized four different Mg/Si ratio...The effect of Mg/Si mass ratio on the microstructure and mechanical properties of Al-Mg-Si cast aluminum alloys under sub-rapid solidification conditions was investigated.This study utilized four different Mg/Si ratios:2.83,1.91,1.73,and 1.53.To analyze the evolution of the microstructure,particularly the second phase,various techniques were employed:optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and electron backscatter diffraction(EBSD).Additionally,thermodynamic calculations were performed using the Thermal-calc software to further understand the microstructural changes.Results show that as the Mg/Si ratio decreases from 2.83 to 1.53,α-Al grains become more uniformly distributed.Meanwhile,the morphology of the Mg_(2)Si phases changes from skeletal to short stick shapes with a decreasing aspect ratio.An as-cast Al-Mg-Si alloy with a Mg/Si ratio of 1.53 exhibits high strength,achieving an ultimate tensile strength(UTS)of 320.6 MPa and a yield strength(YS)of 249.9 MPa.The cast alloy with a Mg/Si ratio of 2.83exhibits the highest elongation,reaching 5.31%.This superior elongation is attributed to the uniform distribution of Mg_(2)Si phases,which possess a long skeletal shape.Conversely,the alloy with a Mg/Si ratio of 1.53 demonstrates the lowest elongation,primarily due to the central concentration of Mg_(2)Si phases,which are characterized by their short stick shapes.展开更多
采用T2Cu和CuSi3焊丝在相同工艺参数下对厚度为1 mm的TC4钛合金及304不锈钢进行焊接,并借助光学显微镜(optical microscopy,OM)和扫描电镜(scanning electron microscopy,SEM)研究了两种焊丝下的TC4/304异种金属焊接熔池冶金行为.对比...采用T2Cu和CuSi3焊丝在相同工艺参数下对厚度为1 mm的TC4钛合金及304不锈钢进行焊接,并借助光学显微镜(optical microscopy,OM)和扫描电镜(scanning electron microscopy,SEM)研究了两种焊丝下的TC4/304异种金属焊接熔池冶金行为.对比分析了不同焊丝成分,尤其是Si元素的加入对TC4/304异种金属接头宏观成形、界面微观组织和力学性能的影响.结果表明,Si元素的加入使液态熔池流动性显著增强,消除了凹陷和孔洞等缺陷,解决了焊缝背部熔合不良问题,焊缝宏观成形显著改善.两种焊丝均有效阻隔了Ti,Fe原子,钛/铜界面未生成Ti-Fe化合物,但在焊缝中心以及铜/钢界面处生成了少量Ti-Fe相.CuSi3焊丝中充足的Si元素不仅使Ti5Si3相形核生长的更加充分,在熔池流动的作用下均匀分布于焊缝中,对接头起到弥散强化作用.与T2Cu焊丝相比,CuSi3焊丝所得接头的抗拉强度提升了81.4%,最高达到366.8 MPa.展开更多
We focus on a novel and economical route for the synthesis of Si fertilizer via the calcination method using lithium pyroxene acid-leaching residues as the starting materials.The molar ratio of Si/K/Ca of 1:1.4:0.8,ca...We focus on a novel and economical route for the synthesis of Si fertilizer via the calcination method using lithium pyroxene acid-leaching residues as the starting materials.The molar ratio of Si/K/Ca of 1:1.4:0.8,calcination temperature of 900℃and calcination time of 120 min were identified as the optimal conditions to maximize the available Si content of the prepared Si fertilizer.The performance of the resulting product satisfies the Chinese agricultural standard for silica fertilizers,providing a new solution for the large-scale harmless and sustainable reuse of lithium pyroxene tailings.The X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR)characterization elucidated the formation mechanism of silica fertilizers,and identified KAlSiO_(4)and K_(4)CaSi_(3)O_(9)as the primary silicates products.Observation of the surface morphology of the samples was conducted by scanning electron microscopy(SEM)and X-ray energy dispersive spectrometry(EDS),and compositional analysis of the micro-regions.The acceleration action of CaCO_(3)in the decomposition process of lithium pyroxene acid-leaching residues was demonstrated by the thermogravimetry-differential scanning calorimetry(TG-DSC)test.Determination of heavy metal elements in Si fertilizer was performed by ICP-OES.Potting experiments confirmed that the best growth of pakchoi was achieved when 5 g·kg^(-1)of Si fertilizer was applied.These evidence suggests that the Si fertilizer prepared in this study is a promising candidate for a silica-supplemented soil.展开更多
Any product must undergo precise manufacturing before use.The damage incurred during the manufacturing process can significantly impact the residual strength of the product post-manufacturing.However,the relationship ...Any product must undergo precise manufacturing before use.The damage incurred during the manufacturing process can significantly impact the residual strength of the product post-manufacturing.However,the relationship between residual bending strength and manufacturing-induced damage remains unclear,despite being a crucial parameter for assessing material service life and performance,leading to a decrease in product performance reliability.This study focuses on investigating the impact of crack generation on residual bending strength through theoretical and experimental analyses of scratching,grinding,and three-point bending.The research first elucidates the forms and mechanisms of material damage through scratch experiments.Subsequently,using resin-bonded and electroplated wheels as case studies,the influence of different process parameters on grinding damage and residual bending strength is explored.The reduction of brittle removal can lead to a 50%–60%decrease in residual bending strength.Lastly,a model is developed to delineate the relationship between processing parameters and the residual bending strength of the product,with the model exhibiting an error margin of less than 11%.This model clearly reveals the effect of crack generation under different process parameters on residual flexural strength.展开更多
β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy ...β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy on the in-situ synthesis of β-Sialon within Al_(2)O_(3)-C refractory materials,as well as its oxidation behavior,was investigated.The findings indicate that the presence of Al/Si alloy promotes the formation of AlN and SiC whiskers at 1300℃,which subsequently facilitate the production of plate-like β-Sialon at 1500℃.Density functional theory analysis reveals that the(020)crystal plane of β-Sialon exhibits the lowest adsorption energy for Al2O and AlO molecules under the influence of iron atoms,suggesting a solid-liquid-vapor growth mechanism for β-Sialon formation.The introduction of these ceramic phases significantly enhances the mechanical properties of Al_(2)O_(3)-C refractories.Specifically,the addition of 6 wt.%Al/Si alloy yielded specimens with the highest cold modulus of rupture and cold crushing strength at 1500℃,achieving values of 35.2 and 127.5 MPa,respectively--representing increases of 40.1%and 37.4%.Furthermore,during high-temperature oxidation,the formation of plate-like β-Sialon leads to the development of a dense protective layer on the surface.This impedes the diffusion pathways of oxygen and consequently enhances the oxidation resistance of the refractory.展开更多
基金supported by the National Natural Science Foundation of China(No.61904073)Spring City Plan-Special Program for Young Talents(No.K202005007)+4 种基金Yunnan Talents Support Plan for Yong Talents(No.XDYC-QNRC-20220482)Yunnan Local Colleges Applied Basic Research Projects(No.202101BA070001-138)Scientific Research Fund of Yunnan Education Department(No.2023Y0883)Frontier Research Team of Kunming University 2023Key Laboratory of Artificial Microstructures in Yunnan Higher Education。
文摘Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.
基金financially supported by the National Natural Science Foundation of China(Nos.22366032,52072119)Hunan Intelligent Rehabilitation Robot and Auxiliary Equipment Engineering Technology Research Center(No.2025SH301)。
文摘Solid-state lithium-ion batteries(SSLIBs) offer significant advantages over traditional liquid-electrolytebased batteries,including improved safety,higher energy density,and better thermal stability.Among various anode materials,silicon(Si)-based anodes have attracted significant attention due to their ultrahigh theoretical capacity(~4200 mAh/g) and abundant resources.However,widespread adoption of Si-based anodes in SSLIBs is still restricted by some critical challenges such as severe volume expansion,low electronic and ionic conductivity,high interfacial impedance,and low initial Coulombic efficiency(ICE).This review mainly focuses on the design strategies of Si-based anode for SSLIBs at the material,electrode and cell levels including nanostructuring,Si alloys,Si-carbon composites,conductive additives,advanced binder,external pressure,electrolyte infiltration,and prelithiation.The insights provided here aim to inspire future research and accelerate commercialization of high-performance Si-based anodes in next-generation SSLIBs.
基金financial support from the National Natural Science Foundation of China(Nos.52275385,U2167216)Sichuan Province Science and Technology Support Program,China(No.2022YFG0086).
文摘To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles.
基金National Natural Science Foundation of China(No.22275150)。
文摘To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.
基金Project(2021YJ059)supported by the Research Project of China Academy of Railway Sciences。
文摘The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated to assess erosion depth,microstructure,phase migrations,and pore structure in various tunnel lining cement-based materials.Additionally,Ca^(2+)leaching was analyzed,and impact of Ca/Si molar ratio in hydration products on erosion resistance was discussed by thermodynamic calculations.The results indicate that carbonated water erosion caused rough and porous surface on specimens,with reduced portlandite and CaCO_(3) content,increased porosity,and an enlargement of pore size.The thermodynamic calculations indicate that the erosion is spontaneous,driven by physical dissolution and chemical reactions dominated by Gibbs free energy.And the erosion reactions proceed more spontaneously and extensively when Ca/Si molar ratio in hydration products was higher.Therefore,cement-based materials with higher portlandite content exhibit weaker erosion resistance.Model-building concrete,with C-S-H gel and portlandite as primary hydration products,has greater erosion susceptibility than shotcrete with ettringite as main hydration product.Moreover,adding silicon-rich mineral admixtures can enhance the erosion resistance.This research offers theory and tech insights to boost cement-based material resistance against carbonated water erosion in karst tunnel engineering.
基金supported by the WQ&UCS (Binzhou)Industrialization Research Institute。
文摘The effect of Mg/Si mass ratio on the microstructure and mechanical properties of Al-Mg-Si cast aluminum alloys under sub-rapid solidification conditions was investigated.This study utilized four different Mg/Si ratios:2.83,1.91,1.73,and 1.53.To analyze the evolution of the microstructure,particularly the second phase,various techniques were employed:optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and electron backscatter diffraction(EBSD).Additionally,thermodynamic calculations were performed using the Thermal-calc software to further understand the microstructural changes.Results show that as the Mg/Si ratio decreases from 2.83 to 1.53,α-Al grains become more uniformly distributed.Meanwhile,the morphology of the Mg_(2)Si phases changes from skeletal to short stick shapes with a decreasing aspect ratio.An as-cast Al-Mg-Si alloy with a Mg/Si ratio of 1.53 exhibits high strength,achieving an ultimate tensile strength(UTS)of 320.6 MPa and a yield strength(YS)of 249.9 MPa.The cast alloy with a Mg/Si ratio of 2.83exhibits the highest elongation,reaching 5.31%.This superior elongation is attributed to the uniform distribution of Mg_(2)Si phases,which possess a long skeletal shape.Conversely,the alloy with a Mg/Si ratio of 1.53 demonstrates the lowest elongation,primarily due to the central concentration of Mg_(2)Si phases,which are characterized by their short stick shapes.
文摘We focus on a novel and economical route for the synthesis of Si fertilizer via the calcination method using lithium pyroxene acid-leaching residues as the starting materials.The molar ratio of Si/K/Ca of 1:1.4:0.8,calcination temperature of 900℃and calcination time of 120 min were identified as the optimal conditions to maximize the available Si content of the prepared Si fertilizer.The performance of the resulting product satisfies the Chinese agricultural standard for silica fertilizers,providing a new solution for the large-scale harmless and sustainable reuse of lithium pyroxene tailings.The X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR)characterization elucidated the formation mechanism of silica fertilizers,and identified KAlSiO_(4)and K_(4)CaSi_(3)O_(9)as the primary silicates products.Observation of the surface morphology of the samples was conducted by scanning electron microscopy(SEM)and X-ray energy dispersive spectrometry(EDS),and compositional analysis of the micro-regions.The acceleration action of CaCO_(3)in the decomposition process of lithium pyroxene acid-leaching residues was demonstrated by the thermogravimetry-differential scanning calorimetry(TG-DSC)test.Determination of heavy metal elements in Si fertilizer was performed by ICP-OES.Potting experiments confirmed that the best growth of pakchoi was achieved when 5 g·kg^(-1)of Si fertilizer was applied.These evidence suggests that the Si fertilizer prepared in this study is a promising candidate for a silica-supplemented soil.
基金Supported by National Key Research and Development Program of China(Grant No.2023YFB3711100)National Natural Science Foundation of China(Grant Nos.52275458,52275207)Tianjin Municipal Natural Science Foundation(Grant No.22JCZDJC00050)。
文摘Any product must undergo precise manufacturing before use.The damage incurred during the manufacturing process can significantly impact the residual strength of the product post-manufacturing.However,the relationship between residual bending strength and manufacturing-induced damage remains unclear,despite being a crucial parameter for assessing material service life and performance,leading to a decrease in product performance reliability.This study focuses on investigating the impact of crack generation on residual bending strength through theoretical and experimental analyses of scratching,grinding,and three-point bending.The research first elucidates the forms and mechanisms of material damage through scratch experiments.Subsequently,using resin-bonded and electroplated wheels as case studies,the influence of different process parameters on grinding damage and residual bending strength is explored.The reduction of brittle removal can lead to a 50%–60%decrease in residual bending strength.Lastly,a model is developed to delineate the relationship between processing parameters and the residual bending strength of the product,with the model exhibiting an error margin of less than 11%.This model clearly reveals the effect of crack generation under different process parameters on residual flexural strength.
基金supported by the Natural Science Foundation of Henan Province(No.232300420329)Key Scientific Research Project of Colleges and Universities in Henan Province(Nos.23B430012,22A430028,and 25B430022)+2 种基金Henan Provincial Science and Technology Research Project(No.242102231064)National Natural Science Foundation of China(No.52202064)Luoyang Major Science and Technology Innovation Project(No.2301009A).
文摘β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy on the in-situ synthesis of β-Sialon within Al_(2)O_(3)-C refractory materials,as well as its oxidation behavior,was investigated.The findings indicate that the presence of Al/Si alloy promotes the formation of AlN and SiC whiskers at 1300℃,which subsequently facilitate the production of plate-like β-Sialon at 1500℃.Density functional theory analysis reveals that the(020)crystal plane of β-Sialon exhibits the lowest adsorption energy for Al2O and AlO molecules under the influence of iron atoms,suggesting a solid-liquid-vapor growth mechanism for β-Sialon formation.The introduction of these ceramic phases significantly enhances the mechanical properties of Al_(2)O_(3)-C refractories.Specifically,the addition of 6 wt.%Al/Si alloy yielded specimens with the highest cold modulus of rupture and cold crushing strength at 1500℃,achieving values of 35.2 and 127.5 MPa,respectively--representing increases of 40.1%and 37.4%.Furthermore,during high-temperature oxidation,the formation of plate-like β-Sialon leads to the development of a dense protective layer on the surface.This impedes the diffusion pathways of oxygen and consequently enhances the oxidation resistance of the refractory.