Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy densit...Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.展开更多
Besides the common short-channel effect(SCE)of threshold voltage(V_(th))roll-off during the channel length(L)downscaling of In GaZnO(IGZO)thin-film transistors(TFTs),an opposite V_(th)roll-up was reported in this work...Besides the common short-channel effect(SCE)of threshold voltage(V_(th))roll-off during the channel length(L)downscaling of In GaZnO(IGZO)thin-film transistors(TFTs),an opposite V_(th)roll-up was reported in this work.Both roll-off and roll-up effects of Vth were comparatively investigated on IGZO transistors with varied gate insulator(GI),source/drain(S/D),and device architecture.For IGZO transistors with thinner GI,the SCE was attenuated due to the enhanced gate controllability over the variation of channel carrier concentration,while the Vth roll-up became more noteworthy.The latter was found to depend on the relative ratio of S/D series resistance(R_(SD))over channel resistance(R_(CH)),as verified on transistors with different S/D.Thus,an ideal S/D engineering with small R_(SD)but weak dopant diffusion is highly expected during the downscaling of L and GI in IGZO transistors.展开更多
The glucose oxidase (GOD) immobilized onto the surface of activated ca rbon powders at the glassy carbon electrode (GOD-C/GC) could undergo the quasi-r eversible, direct electrochemical reaction. Its formal redox pote...The glucose oxidase (GOD) immobilized onto the surface of activated ca rbon powders at the glassy carbon electrode (GOD-C/GC) could undergo the quasi-r eversible, direct electrochemical reaction. Its formal redox potential, E0′, is almost independent on the scan rates. The average value of E0′ is (-0.467 ± 0 .002) V (vs SCE) in the pH 6.8 phosphate buffer solution. Its apparent heterogen eous electron transfer rate constant (ks) is (1.18 ± 0.59) s-1, which is much h igher than that reported previously. The dependence of E0′ on the pH of the buf fer solution indicated that the direct electrochemical reaction of the immobiliz ed GOD is a two-electron transfer reaction process coupled with two-proton trans fer. The further experimental results demonstrated that the immobilized GOD reta ined its bioelectrocatalytic activity to the oxidation of β-D(+) glucose.展开更多
基金supported by the University of Wollongong,Wollongong,Australiafinancial support from the National Natural Science Foundation of China(22272086)Natural Science Foundation of Sichuan Province(2023NSFSC0009).
文摘Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.
基金supported financially by National key Research and Development Program under Grant 2021YFB3600802Shenzhen Municipal Scientific Program under Grant KJZD20230923114111021。
文摘Besides the common short-channel effect(SCE)of threshold voltage(V_(th))roll-off during the channel length(L)downscaling of In GaZnO(IGZO)thin-film transistors(TFTs),an opposite V_(th)roll-up was reported in this work.Both roll-off and roll-up effects of Vth were comparatively investigated on IGZO transistors with varied gate insulator(GI),source/drain(S/D),and device architecture.For IGZO transistors with thinner GI,the SCE was attenuated due to the enhanced gate controllability over the variation of channel carrier concentration,while the Vth roll-up became more noteworthy.The latter was found to depend on the relative ratio of S/D series resistance(R_(SD))over channel resistance(R_(CH)),as verified on transistors with different S/D.Thus,an ideal S/D engineering with small R_(SD)but weak dopant diffusion is highly expected during the downscaling of L and GI in IGZO transistors.
文摘The glucose oxidase (GOD) immobilized onto the surface of activated ca rbon powders at the glassy carbon electrode (GOD-C/GC) could undergo the quasi-r eversible, direct electrochemical reaction. Its formal redox potential, E0′, is almost independent on the scan rates. The average value of E0′ is (-0.467 ± 0 .002) V (vs SCE) in the pH 6.8 phosphate buffer solution. Its apparent heterogen eous electron transfer rate constant (ks) is (1.18 ± 0.59) s-1, which is much h igher than that reported previously. The dependence of E0′ on the pH of the buf fer solution indicated that the direct electrochemical reaction of the immobiliz ed GOD is a two-electron transfer reaction process coupled with two-proton trans fer. The further experimental results demonstrated that the immobilized GOD reta ined its bioelectrocatalytic activity to the oxidation of β-D(+) glucose.