The inverse scattering transform of a coupled Sasa–Satsuma equation is studied via Riemann–Hilbert approach. Firstly, the spectral analysis is performed for the coupled Sasa–Satsuma equation, from which a Riemann–...The inverse scattering transform of a coupled Sasa–Satsuma equation is studied via Riemann–Hilbert approach. Firstly, the spectral analysis is performed for the coupled Sasa–Satsuma equation, from which a Riemann–Hilbert problem is formulated. Then the Riemann–Hilbert problem corresponding to the reflection-less case is solved.As applications, multi-soliton solutions are obtained for the coupled Sasa–Satsuma equation. Moreover, some figures are given to describe the soliton behaviors, including breather types, single-hump solitons, double-hump solitons, and two-bell solitons.展开更多
This work proposes the construction of a prototype of pulse-kink hybrid solitary waves with a strong Kink dosage of the Sasa-Satsuma equation which describes the dynamics of the wave propagating in an optical fiber wh...This work proposes the construction of a prototype of pulse-kink hybrid solitary waves with a strong Kink dosage of the Sasa-Satsuma equation which describes the dynamics of the wave propagating in an optical fiber where the stimulated Raman scattering effect is bethinking during modeling. The ultimate goal of this work is to propose a plateful of solutions likely to serve as signals during studies on computer or laboratory propagation studies. The resolution of such an equation is not always the easiest thing, and we used the Bogning-Djeumen Tchaho-Kofané method extended to the implicit functions of Bogning to obtain the results. The flexibility of the iB-functions made it possible to deduce the trigonometric solutions, from the obtained solitary wave solutions with a hyperbolic analytical sequence of the studied Sasa-Satsuma equation. A better appreciation of the nature of the solutions obtained is made through the profiles of some solutions obtained during the different analyses.展开更多
基金Supported by the National Natural Science Foundation of China under Project Nos.11331008 and 11171312the Collaborative Innovation Center for Aviation Economy Development of Henan Province
文摘The inverse scattering transform of a coupled Sasa–Satsuma equation is studied via Riemann–Hilbert approach. Firstly, the spectral analysis is performed for the coupled Sasa–Satsuma equation, from which a Riemann–Hilbert problem is formulated. Then the Riemann–Hilbert problem corresponding to the reflection-less case is solved.As applications, multi-soliton solutions are obtained for the coupled Sasa–Satsuma equation. Moreover, some figures are given to describe the soliton behaviors, including breather types, single-hump solitons, double-hump solitons, and two-bell solitons.
文摘This work proposes the construction of a prototype of pulse-kink hybrid solitary waves with a strong Kink dosage of the Sasa-Satsuma equation which describes the dynamics of the wave propagating in an optical fiber where the stimulated Raman scattering effect is bethinking during modeling. The ultimate goal of this work is to propose a plateful of solutions likely to serve as signals during studies on computer or laboratory propagation studies. The resolution of such an equation is not always the easiest thing, and we used the Bogning-Djeumen Tchaho-Kofané method extended to the implicit functions of Bogning to obtain the results. The flexibility of the iB-functions made it possible to deduce the trigonometric solutions, from the obtained solitary wave solutions with a hyperbolic analytical sequence of the studied Sasa-Satsuma equation. A better appreciation of the nature of the solutions obtained is made through the profiles of some solutions obtained during the different analyses.