Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec...Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.展开更多
With the emergence of general foundational models,such as Chat Generative Pre-trained Transformer(ChatGPT),researchers have shown considerable interest in the potential applications of foundation models in the process...With the emergence of general foundational models,such as Chat Generative Pre-trained Transformer(ChatGPT),researchers have shown considerable interest in the potential applications of foundation models in the process industry.This paper provides a comprehensive overview of the challenges and opportunities presented by the use of foundation models in the process industry,including the frameworks,core applications,and future prospects.First,this paper proposes a framework for foundation models for the process industry.Second,it summarizes the key capabilities of industrial foundation models and their practical applications.Finally,it highlights future research directions and identifies unresolved open issues related to the use of foundation models in the process industry.展开更多
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ...Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.展开更多
The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensil...The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensile stress to compressive stress,decreasing the surface roughness and increasing the ratio of the β-Li phase.The USRPed LZ91 sample(3 passes)showed superior corrosion resistance,with the corrosion current density changing from 57.11 to 24.70μA cm^(-2),and the polarization resistance increasing from 576.3 to 1146.1Ωcm^(2).According to the corrosion procedure evaluations,in situ observation revealed that the LZ91 alloy initially experiences pitting,which subsequently develops into cracking.The substantial area coverage of the β-Li phase facilitates the formation of a protective film on the surface,effectively delaying localized corrosion.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s...Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s Health Management Center from January to December 2024 were randomly divided into a control group(200 cases)and an observation group(200 cases).The control group used traditional manual guidance methods,while the observation group employed the intelligent guidance system.The study compared two groups in terms of completion time,waiting time for each procedure,check-up efficiency scores,examinee satisfaction,and report issuance time.Results:The overall examination time in the observation group(85.3±12.7 minutes)was significantly shorter than that in the control group(142.6±18.5 minutes)(P<0.01);average waiting time per procedure decreased by 62.4%;check-up efficiency scores(8.9±0.8 points)were significantly higher than those in the control group(5.2±1.1 points)(P<0.01);satisfaction reached 96.5%,significantly higher than the control group’s 78.0%(P<0.01);and report issuance time was advanced by 1.5 days.Conclusion:Intelligent guidance systems can significantly optimize check-up processes,improve work efficiency,and examinee satisfaction,demonstrating significant clinical application value.展开更多
Transpiration cooling is crucial for the performance of aerospace engine components,relying heavily on the processing quality and accuracy of microchannels.Laser powder bed fusion(LPBF)offers the potential for integra...Transpiration cooling is crucial for the performance of aerospace engine components,relying heavily on the processing quality and accuracy of microchannels.Laser powder bed fusion(LPBF)offers the potential for integrated manufacturing of complex parts and precise microchannel fabrication,essential for engine cooling applications.However,optimizing LPBF’s extensive process parameters to control processing quality and microchannel accuracy effectively remains a significant challenge,especially given the time-consuming and labor-intensive nature of handling numerous variables and the need for thorough data analysis and correlation discovery.This study introduced a combined methodology of high-throughput experiments and Gaussian process algorithms to optimize the processing quality and accuracy of nickel-based high-temperature alloy with microchannel structures.250 parameter combinations,including laser power,scanning speed,channel diameter,and spot compensation,were designed across ten high-throughput specimens.This setup allowed for rapid and efficient evaluation of processing quality and microchannel accuracy.Employing Bayesian optimization,the Gaussian process model accurately predicted processing outcomes over a broad parameter range.The correlation between various processing parameters,processing quality and accuracy was revealed,and various optimized process combinations were summarized.Verification through computed Tomography testing of the specimens confirmed the effectiveness and precision of this approach.The approach introduced in this research provides a way for quickly and efficiently optimizing the process parameters and establishing process-property relationships for LPBF,which has broad application value.展开更多
[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key ...[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
With the increasing per capita demand for animal protein,there is a growing interest in the abundant abalone protein resources.Abalone proteins are known for their nutritional and functional properties that contribute...With the increasing per capita demand for animal protein,there is a growing interest in the abundant abalone protein resources.Abalone proteins are known for their nutritional and functional properties that contribute to flavor and texture.We systematically constructed the relationship between abalone protein,processing,and proteomics.This paper reviews the nutritional properties of abalone proteins and evaluates the effects of different thermal processing techniques,non-thermal processing,and freezing on abalone proteins.In addition,we synthesize published abalone proteomics studies and the use of proteomics technology to better elucidate the quality changes of abalone and its products,and as a technical basis for the study of blue food marker proteins.It is important direction to clearly explain the protein composition and meat quality mechanism of abalone in the processing and storage by proteomic.During various types of thermal processing,non-thermal processing,and freezing of abalone,the various chemical forces between protein molecules are disrupted,which in turn leads to different degrees of denaturation,aggregation,and gelation,which may have an impact on the organoleptic properties,bioavailability,and digestibility of abalone muscle.Proteomics is used in abalone biology studies to understand developmental biology,physiology,disease,stress,and species identification and can also be a powerful tool to characterize processing methods on abalone quality properties.展开更多
This paper examines the challenges in the technical briefing process for construction projects,including a three-level system and issues related to formalization.An optimization approaches was introduced based on the ...This paper examines the challenges in the technical briefing process for construction projects,including a three-level system and issues related to formalization.An optimization approaches was introduced based on the PDCA cycle,alongside the application of BIM and AR technologies.The key preparatory measures were outlined in this study and the functions of the management system was mentioned.Through case comparisons,this paper demonstrated that these optimizations can significantly improve efficiency and quality,support the development of an evaluation system to verify results,and highlight the critical role of organizational support.展开更多
[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin cont...[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.展开更多
Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively ...Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively adjusted the drying time of various paint types under different seasons and temperatures.Eventually,a painting solution suitable for our company has been developed.According to this process,the painting quality has been significantly improved,costs have been saved,the labor intensity has been reduced,and production efficiency has been remarkably enhanced.展开更多
Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mec...Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.展开更多
Bacterial and mycoplasma infections pose a severe hazard to human life and property.These necessitate the development of antibacterial metallic materials that can be produced efficiently in large quantities.In this st...Bacterial and mycoplasma infections pose a severe hazard to human life and property.These necessitate the development of antibacterial metallic materials that can be produced efficiently in large quantities.In this study,an(Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(86)Cu_(12)Ag_(2)medium-entropy alloy(MEA)consisting of in situ FCC1(austenite)and FCC2(Cu–Ag-rich)phases was prepared.It displayed a yield strength of 1100 MPa,fracture strength of 1921 MPa,and compressive plasticity of 27%at room temperature.This is attributed to the low stacking fault energy(3.7 m J m^(-2))inducing strong transformation-induced plasticity(TRIP),twinning-induced plasticity(TWIP),and lattice distortion.The alloy contained nano-and microscale antibacterial phases.This enabled it to achieve an antimicrobial efficiency higher than 99.9%against E.coli and S.aureus after6 h of exposure.The hot working efficiency makes it preferable for mass production with critical process parameters.A constitutive model was established using the Arrhenius equation to validate the applicability of the dynamic materials model(DMM).Subsequently,the hot processing map of the medium-entropy alloy was established based on the DMM.The optimal processing parameters were determined as 800℃with strain rates of10^(–1)–10^(–2)s^(-1).The low stacking fault energy ensures that dynamic recrystallization is the primary softening mechanism in the“safe”region.Finally,the density of states(DOS)of the MEA(determined by first-principles calculations)was significantly lower(162.1 eV)than those of Ni and Fe.This indicated a strong high-temperature stability.The DOS increased marginally with an increase in deformation.展开更多
In the project procurement management process of telecommunication enterprises,due to the complexity of technology,the professional procurement project manager is responsible for the whole process of professional proc...In the project procurement management process of telecommunication enterprises,due to the complexity of technology,the professional procurement project manager is responsible for the whole process of professional procurement in a one-stop way.The integration of this management process superficially improves labor productivity,but in essence lacks effective checks and balances and supervision.In order to supervise the project procurement management process and ensure the legal compliance of procurement management,this paper studies the project procurement management process of telecommunication enterprises,proposes the optimization process of project procurement management in the segmentation of purchasing manager-business manager,and constructs a matrix project procurement management model,which will contribute to the overall improvement of the telecommunication enterprises’procurement performance.展开更多
In response to the challenges associated with the traditional synthesis process of hymenidin,such as complex reaction steps,low yields,high costs,and environmental concerns,the synthesis process has been significantly...In response to the challenges associated with the traditional synthesis process of hymenidin,such as complex reaction steps,low yields,high costs,and environmental concerns,the synthesis process has been significantly enhanced by optimizing reaction conditions,screening for efficient catalysts,and incorporating the concepts of green chemistry.The optimized process has significantly improved the synthesis efficiency and product quality of hymenidin,reduced production costs,and minimized environmental pollution,thereby providing robust support for its industrial production and broad application.展开更多
Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials...Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.展开更多
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
文摘Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.
基金supported by the National Natural Science Foundation of China(62225302,623B2014,and 62173023).
文摘With the emergence of general foundational models,such as Chat Generative Pre-trained Transformer(ChatGPT),researchers have shown considerable interest in the potential applications of foundation models in the process industry.This paper provides a comprehensive overview of the challenges and opportunities presented by the use of foundation models in the process industry,including the frameworks,core applications,and future prospects.First,this paper proposes a framework for foundation models for the process industry.Second,it summarizes the key capabilities of industrial foundation models and their practical applications.Finally,it highlights future research directions and identifies unresolved open issues related to the use of foundation models in the process industry.
基金the National Science and Technology Major Project of China(No.2019-VII0017e0158)the National Natural Science Foundation of China(No.U21A20131)+1 种基金the Industry-University Research Cooperation Project,China(No.HFZL2020CXY025)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G05).
文摘Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.
基金financially supported by the National Natural Science Foundation of China(No.52271091)the National Key Research and Development Program of China(No.2021YFB3701100)the Natural Science Foundation Project of Ningxia Province(No.2023AAC03324).
文摘The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensile stress to compressive stress,decreasing the surface roughness and increasing the ratio of the β-Li phase.The USRPed LZ91 sample(3 passes)showed superior corrosion resistance,with the corrosion current density changing from 57.11 to 24.70μA cm^(-2),and the polarization resistance increasing from 576.3 to 1146.1Ωcm^(2).According to the corrosion procedure evaluations,in situ observation revealed that the LZ91 alloy initially experiences pitting,which subsequently develops into cracking.The substantial area coverage of the β-Li phase facilitates the formation of a protective film on the surface,effectively delaying localized corrosion.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s Health Management Center from January to December 2024 were randomly divided into a control group(200 cases)and an observation group(200 cases).The control group used traditional manual guidance methods,while the observation group employed the intelligent guidance system.The study compared two groups in terms of completion time,waiting time for each procedure,check-up efficiency scores,examinee satisfaction,and report issuance time.Results:The overall examination time in the observation group(85.3±12.7 minutes)was significantly shorter than that in the control group(142.6±18.5 minutes)(P<0.01);average waiting time per procedure decreased by 62.4%;check-up efficiency scores(8.9±0.8 points)were significantly higher than those in the control group(5.2±1.1 points)(P<0.01);satisfaction reached 96.5%,significantly higher than the control group’s 78.0%(P<0.01);and report issuance time was advanced by 1.5 days.Conclusion:Intelligent guidance systems can significantly optimize check-up processes,improve work efficiency,and examinee satisfaction,demonstrating significant clinical application value.
基金project supported by the National Natural Science Foundation of China(Grant Nos.52225503 and 52405380)National Key Research and Development Program(Grant Nos.2023YFB4603303 and 2023YFB4603304)+4 种基金Key Research and Development Program of Jiangsu Province(Grant Nos.BE2022069 and BE2022069-3)National Natural Science Foundation of China for Creative Research Groups(Grant No.51921003)The 15th Batch of“Six Talents Peaks”Innovative Talents Team Program of Jiangsu province(Grant Nos.TD-GDZB-001)Shanghai Aerospace Science and Technology Innovation Fund Project(Grant No.SAST2023-066)The Fundamental Research Funds for the Central Universities(Grant Nos.NS2023035 and NP2024128)。
文摘Transpiration cooling is crucial for the performance of aerospace engine components,relying heavily on the processing quality and accuracy of microchannels.Laser powder bed fusion(LPBF)offers the potential for integrated manufacturing of complex parts and precise microchannel fabrication,essential for engine cooling applications.However,optimizing LPBF’s extensive process parameters to control processing quality and microchannel accuracy effectively remains a significant challenge,especially given the time-consuming and labor-intensive nature of handling numerous variables and the need for thorough data analysis and correlation discovery.This study introduced a combined methodology of high-throughput experiments and Gaussian process algorithms to optimize the processing quality and accuracy of nickel-based high-temperature alloy with microchannel structures.250 parameter combinations,including laser power,scanning speed,channel diameter,and spot compensation,were designed across ten high-throughput specimens.This setup allowed for rapid and efficient evaluation of processing quality and microchannel accuracy.Employing Bayesian optimization,the Gaussian process model accurately predicted processing outcomes over a broad parameter range.The correlation between various processing parameters,processing quality and accuracy was revealed,and various optimized process combinations were summarized.Verification through computed Tomography testing of the specimens confirmed the effectiveness and precision of this approach.The approach introduced in this research provides a way for quickly and efficiently optimizing the process parameters and establishing process-property relationships for LPBF,which has broad application value.
基金Supported by Central Guided Local Science and Technology Development Funds(ZY20230102)Guilin Scientific Research and Technology Development Programme Project(2023010301-1,20220104-4)+1 种基金Guangxi Science and Technology Programme Project(GK AB24010263)Guangxi Innovation Driving Development Special Funds Project(GK AA22096020).
文摘[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金supported by the Cross-disciplinary Integration Project of Fujian Agriculture and Forestry University(71202103C)Science and Technology Projects of Fuzhou Ocean Research Institute(2022F16).
文摘With the increasing per capita demand for animal protein,there is a growing interest in the abundant abalone protein resources.Abalone proteins are known for their nutritional and functional properties that contribute to flavor and texture.We systematically constructed the relationship between abalone protein,processing,and proteomics.This paper reviews the nutritional properties of abalone proteins and evaluates the effects of different thermal processing techniques,non-thermal processing,and freezing on abalone proteins.In addition,we synthesize published abalone proteomics studies and the use of proteomics technology to better elucidate the quality changes of abalone and its products,and as a technical basis for the study of blue food marker proteins.It is important direction to clearly explain the protein composition and meat quality mechanism of abalone in the processing and storage by proteomic.During various types of thermal processing,non-thermal processing,and freezing of abalone,the various chemical forces between protein molecules are disrupted,which in turn leads to different degrees of denaturation,aggregation,and gelation,which may have an impact on the organoleptic properties,bioavailability,and digestibility of abalone muscle.Proteomics is used in abalone biology studies to understand developmental biology,physiology,disease,stress,and species identification and can also be a powerful tool to characterize processing methods on abalone quality properties.
文摘This paper examines the challenges in the technical briefing process for construction projects,including a three-level system and issues related to formalization.An optimization approaches was introduced based on the PDCA cycle,alongside the application of BIM and AR technologies.The key preparatory measures were outlined in this study and the functions of the management system was mentioned.Through case comparisons,this paper demonstrated that these optimizations can significantly improve efficiency and quality,support the development of an evaluation system to verify results,and highlight the critical role of organizational support.
基金Supported by Huang Ruisong's National Famous Old Traditional Chinese Medicine Expert Inheritance Studio Construction Project[GuoZhongYiYaoRenJiaoHan(2022)75]Hospital Pharmacy Research Project of Guangxi Pharmaceutical Association(GXYXH-202404)+4 种基金2024 Youth Science Fund Project of International Zhuang Medical Hospital(2024GZYJKT005)High-level Traditional Chinese Medicine Key Discipline Construction Project of National Administration of Traditional Chinese Medicine(ZYYZDXK-2023165)National Old Pharmaceutical Workers Inheritance Studio Construction Project of National Administration of Traditional Chinese Medicine[GuoZhongYiYaoRenJiaoHan(2024)255]Talent Cultivation Project-"Young Crop Project"of International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine(2022001)Guangxi Traditional Chinese Medicine Multidisciplinary Innovation Team Project(GZKJ2309).
文摘[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.
文摘Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively adjusted the drying time of various paint types under different seasons and temperatures.Eventually,a painting solution suitable for our company has been developed.According to this process,the painting quality has been significantly improved,costs have been saved,the labor intensity has been reduced,and production efficiency has been remarkably enhanced.
基金Project(52274348)supported by the National Natural Science Foundation of ChinaProject(2022JH1/10400024)supported by the Major Projects for the“Revealed Top”Science and Technology of Liaoning Province,China。
文摘Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.
基金financially supported by the Science and Technology Program Project of Gansu Province(No.24ZD13GA018)the National Natural Science Foundation of China(Nos.12404230 and 52061027)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LY23E010002)Lanzhou Youth Science and Technology Talent Innovation Project(No.2023-QN-91)
文摘Bacterial and mycoplasma infections pose a severe hazard to human life and property.These necessitate the development of antibacterial metallic materials that can be produced efficiently in large quantities.In this study,an(Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(86)Cu_(12)Ag_(2)medium-entropy alloy(MEA)consisting of in situ FCC1(austenite)and FCC2(Cu–Ag-rich)phases was prepared.It displayed a yield strength of 1100 MPa,fracture strength of 1921 MPa,and compressive plasticity of 27%at room temperature.This is attributed to the low stacking fault energy(3.7 m J m^(-2))inducing strong transformation-induced plasticity(TRIP),twinning-induced plasticity(TWIP),and lattice distortion.The alloy contained nano-and microscale antibacterial phases.This enabled it to achieve an antimicrobial efficiency higher than 99.9%against E.coli and S.aureus after6 h of exposure.The hot working efficiency makes it preferable for mass production with critical process parameters.A constitutive model was established using the Arrhenius equation to validate the applicability of the dynamic materials model(DMM).Subsequently,the hot processing map of the medium-entropy alloy was established based on the DMM.The optimal processing parameters were determined as 800℃with strain rates of10^(–1)–10^(–2)s^(-1).The low stacking fault energy ensures that dynamic recrystallization is the primary softening mechanism in the“safe”region.Finally,the density of states(DOS)of the MEA(determined by first-principles calculations)was significantly lower(162.1 eV)than those of Ni and Fe.This indicated a strong high-temperature stability.The DOS increased marginally with an increase in deformation.
文摘In the project procurement management process of telecommunication enterprises,due to the complexity of technology,the professional procurement project manager is responsible for the whole process of professional procurement in a one-stop way.The integration of this management process superficially improves labor productivity,but in essence lacks effective checks and balances and supervision.In order to supervise the project procurement management process and ensure the legal compliance of procurement management,this paper studies the project procurement management process of telecommunication enterprises,proposes the optimization process of project procurement management in the segmentation of purchasing manager-business manager,and constructs a matrix project procurement management model,which will contribute to the overall improvement of the telecommunication enterprises’procurement performance.
文摘In response to the challenges associated with the traditional synthesis process of hymenidin,such as complex reaction steps,low yields,high costs,and environmental concerns,the synthesis process has been significantly enhanced by optimizing reaction conditions,screening for efficient catalysts,and incorporating the concepts of green chemistry.The optimized process has significantly improved the synthesis efficiency and product quality of hymenidin,reduced production costs,and minimized environmental pollution,thereby providing robust support for its industrial production and broad application.
基金supported by the Research Platform Open Fund Project of Zhejiang Industry and Trade Vocation College(No.Kf202203)the Scientific Research Project of CCCC First Harbor Engineering Company Ltd.(No.2022-7-2)+3 种基金the National Natural Science Foundation of China(No.22406142)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20230262)the Fellowship of China Postdoctoral Science Foundation(No.2023M732636)the Shanghai Post-doctoral Excellence Program(No.2023755).
文摘Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.