Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study propo...Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study proposes a novel aperiodic vibration isolation for improving the internal resonances control of the periodic isolator.The mechanism of the internal resonances control by the aperiodic isolator is firstly explained.For comparing the internal resonances suppression effect of the aperiodic isolator with the periodic isolator,a dynamic model combing the rigid machine,the isolator,and the flexible plate is derived through multi subsystem modeling method and transfer matrix method,whose accuracy is verified through the finite element method.The influences of the aperiodicity and damping of the isolator on the vibration isolation performance and internal resonances suppression effect are investigated by numerical analysis.The numerical results demonstrate that vibration attenuation performances of the periodic isolator and aperiodic isolator are greatly over than that of the continuous isolator in middle and high frequencies.The aperiodic isolator opens the stop bandgaps comparing with the periodic isolator where the pass bandgaps are periodically existed.The damping of the isolator has the stop bandgap widening effect on both the periodic isolator and the aperiodic isolator.In addition,a parameter optimization algorithm of the aperiodic isolator is presented for improving the internal resonances control effect.It is shown that the vibration peaks within the target frequency band of the aperiodic isolator are effectively reduced after the optimization.Finally,the experiments of the three different vibration isolation systems are conducted for verifying the analysis work.展开更多
Interactions between atoms in ultracold quantum gases play an important role in the study of the quantum simulation of many-body physics.Feshbach resonance is a versatile tool to control atomic interactions,where the ...Interactions between atoms in ultracold quantum gases play an important role in the study of the quantum simulation of many-body physics.Feshbach resonance is a versatile tool to control atomic interactions,where the atom-loss spectra are widely used to characterize Feshbach resonances of various atomic species.Here,we report the experimental observation of momentum-induced broadening of widths in atom-loss spectra of narrow ^(133)Cs Feshbach resonances.We drive Bragg excitation to kick the Bose-Einstein condensate of Cs atoms in a cigar-shaped optical trap,and measure the atom-loss spectra of narrow Feshbach resonances of moving ultracold atoms near the magnetic fields 19.84 G and 47.97 G.We show that the widths of the atom-loss spectra are broadened for the atoms with the momenta of 2hk,and 4hk,and even observe splitting in the Feshbach resonance of the atoms with momentum 4hk.Our work may open the way for exploring the interesting physical phenomena arising from the collective velocity of colliding atoms that have been ignored in general.展开更多
A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refracti...A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.展开更多
Using periodic refractive index perturbations,the Brillouin zone is folded,transforming the guided modes in a metasurface into guided resonances with arbitrarily high quality-factors.The incorporation of phase change ...Using periodic refractive index perturbations,the Brillouin zone is folded,transforming the guided modes in a metasurface into guided resonances with arbitrarily high quality-factors.The incorporation of phase change materials within the metasurface enables dynamic modulation of the guided modes.The system’s symmetry ensures a polarization-independent response under normal incidence.Furthermore,the metasurface exhibits excellent sensing performance,demonstrating its potential for advanced photonic applications.展开更多
To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The R...To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The RBM,constructed via eigenvector continuation and trained on both bound and resonant configurations,enables the fast and accurate emulation of resonance properties across the parameter space.To identify the physical resonant states from the emulator’s output,we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts.By applying this framework to unbound nucleus ^(6)Be,we quantified the model uncertainty in the predicted complex energies.The results demonstrate relative errors of 17.48%in the real part and 8.24%in the imaginary part,while achieving a speedup of four orders of magnitude compared with the full GCC calculations.To further investigate the asymptotic behavior of the resonant-state wavefunctions within the RBM framework,we employed a Lippmann–Schwinger(L–S)-based correction scheme.This approach not only improves the consistency between eigenvalues and wavefunctions but also enables a seamless extension from real-space training data to the complex energy plane.By bridging the gap between bound-state and continuum regimes,the L–S correction significantly enhances the emulator’s capability to accurately capture continuum structures in open quantum systems.展开更多
This letter presents a method for probing the attosecond time delay between two radiatively resonant transitions from Fano structures,which arise from interference between the extreme ultraviolet free induction decay(...This letter presents a method for probing the attosecond time delay between two radiatively resonant transitions from Fano structures,which arise from interference between the extreme ultraviolet free induction decay(XFID)emission and high-order harmonics.The ellipticity dependence of the Ne^(+)XFID yield confirms that the ionic excited-state populations originate from inelastic recollision between tunneling electrons and parent ions.Subsequent extraction of relative phases from Fano structures enables the determination of the time delay(~22 as)between the two decay pathways.This work provides an experimental approach to probe the attosecond time delay between different XFID channels and contributes to a deeper understanding of the tunneling-plusrescattering model in strong laser fields.展开更多
The even-parity autoionizing resonance series 3p^5np′[3/2]1,2, 3p^5np′[1/2] 1, and 3p^5nf′[5/2]3 of Ar have been investigated exciting from the two metastable states 3p^54s[3/2]2 and 3p^54s′[1/2]0 in the photon en...The even-parity autoionizing resonance series 3p^5np′[3/2]1,2, 3p^5np′[1/2] 1, and 3p^5nf′[5/2]3 of Ar have been investigated exciting from the two metastable states 3p^54s[3/2]2 and 3p^54s′[1/2]0 in the photon energy range of 32500-35600 cm^-1 with an experimental band- width of ~0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile index and resonance widths, resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index q and the resonance widths F are shown to be approximately proportional to the effective principal quantum number n^*. The line separation of the 3p^5np′ autoionizing resonances is discussed.展开更多
The research of cancer-specific resonances started with Raymond R. Rife’s controversial results. The intensive debate began on the topic, and various interpretations of the results deepened after his death. This them...The research of cancer-specific resonances started with Raymond R. Rife’s controversial results. The intensive debate began on the topic, and various interpretations of the results deepened after his death. This theme presently sparks desperate debates with extreme opinions, from the dangerous quackery to the brilliant discovery. A part of medical practices applies the resonance principle in various anticancer therapies and uses a variety of devices. Most medical experts refuse such “resonance therapies” due to their confidence in their quackery. I summarized some present problems and proposed a possible solution. My present article aims to discuss some aspects of the biological resonances, trying to clear some vague details of this subject and give a possible stochastic explanation of some resonances in cancer therapy. However, when considering the stochastic explanations of resonance frequencies, there are as many of these as there are enzymatic processes affecting the biological systems.展开更多
This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different tem...This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different temperatures and chemical potentials, and they are perfectly thermally insulated from each other and interaction only via a double 'idealized energy filter' whose widths are all finite. Taking advantage of the density of state and Fermi distribution in the 1D system, the heat flux into each reservoir may then be calculated. Moreover, the coefficient of performance may be derived from the expressions for the heat flux into the hot and cold reservoirs. The performance characteristic curves are plotted by numerical analysis. The influences of the resonances widths, the energy position of resonance and the space of two resonances on performance of the ESE refrigerator are discussed. The results obtained here have theoretical significance for the understanding of thermodynamic performance of the micro-nano devices.展开更多
Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and ...Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.展开更多
Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the q...Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.展开更多
Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-fie...Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.展开更多
A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anis...A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anisotropic double- slit split-ring-resonator-based unit cells printed on top of a dielectric substrate, backed by metallic cladding. The proposed metasurface converts an x- or y-polarized wave into its orthogonal polarization over a fractional bandwidth of 100% from 5- 15 GHz, both for normal as well as oblique incidence. Moreover, the sub-wavelength unit-cell size, thin dielectric substrate, and unique unit-cell design collectively make the response of the metasurface same for both polarizations and insensitive to the incidence angle. The designed structure is fabricated and tested. The measurement and simulation results are found to be consistent with each other.展开更多
A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudina...A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements.展开更多
Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances...Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances (LSPRs) are red-shifted exponentially with the increase of the dielectric shell thickness. This is due to the exponential decay of electromagnetic field intensity in the direction perpendicular to the interface. This exponential red-shift depends on the wavelength of the resonance peak instead of the resonance order. In addition, we find that the LSPRs in an Ag nanorice of 60-nm width can be perfectly described by a single linear function. These features make nanorice an ideal platform for sensing applications.展开更多
Multiple Fano resonances of plasmonic nanostructures have attracted much attention due to their potential applications in multicomponent biosensing. In this paper, we propose a series of hybridized nanostructures cons...Multiple Fano resonances of plasmonic nanostructures have attracted much attention due to their potential applications in multicomponent biosensing. In this paper, we propose a series of hybridized nanostructures consisting of a single nanoring and multiple nanorods to generate multiple Fano resonances. One to three Fano resonances are achieved through tuning the number of nanorods. The interaction coupling process between different components of the nanostructures is recognized as the mechanism of multiple Fano resonances. We also theoretically investigate the applications of the produced multiple Fano resonances in refractive index sensing. The specific properties of multiple Fano resonances will make our proposed nanostructures beneficial to high-sensitivity biosensors.展开更多
A symmetric plasmonie structure consisting of metal-insulator metal waveguide, groove studied, which supports double Fano resonances deriving from two different mechanisms and slot cavities is One of the Fano resonanc...A symmetric plasmonie structure consisting of metal-insulator metal waveguide, groove studied, which supports double Fano resonances deriving from two different mechanisms and slot cavities is One of the Fano resonances originates from the interference between the resonances of groove and slot cavities, and the other comes from the interference between slot cavities. The spectral line shapes and the peaks of the double Fano resonances can be modulated by changing the length of the slot cavities and the height of the groove. Furthermore, the wavelength of the resonance peak has a linear relationship with the length of the slot cavities. The proposed plasmonic nanosensor possesses a sensitivity of 800nm/RIU and a figure of merit of 3150, which may have important applications in switches, sensors, and nonlinear devices.展开更多
Considering the geometric nonlinearity due to the large elastic deformations of flexible links, the superharmonic resonances of elastic linkages in the forms of ω1/3 and ω1/2 are studied by the method of multiple sc...Considering the geometric nonlinearity due to the large elastic deformations of flexible links, the superharmonic resonances of elastic linkages in the forms of ω1/3 and ω1/2 are studied by the method of multiple scales. The research shows that the analytical results are coincident with the experimental results.展开更多
The even-parity autoionizing resonance series 5p^5np' [3/2]1, [1/2]1, and 5p^5nf' [5/2]3 of xenon have been investigated, excited from the two metastable states 5p^56s [3/2]2 and 5p^56s' [1/2]0 in the photon energy...The even-parity autoionizing resonance series 5p^5np' [3/2]1, [1/2]1, and 5p^5nf' [5/2]3 of xenon have been investigated, excited from the two metastable states 5p^56s [3/2]2 and 5p^56s' [1/2]0 in the photon energy range of 28000-42000 cm^-1 with experimental bandwidth of -0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index and the resonance width are shown to be approximately proportional to the effective principal quantum number. The line separation of the 5p^5np' autoionizing resonances is discussed.展开更多
This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind tur...This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.展开更多
基金supported by the National Key Research and Development Plan of China (Grant No.2023YFB3406302)Guangdong Basic and Applied Basic Research Foundation (Grant No.2024A1515011126)the Key Research and Development Plan of Shanxi (Grant No.2024GH-ZDXM-29)。
文摘Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study proposes a novel aperiodic vibration isolation for improving the internal resonances control of the periodic isolator.The mechanism of the internal resonances control by the aperiodic isolator is firstly explained.For comparing the internal resonances suppression effect of the aperiodic isolator with the periodic isolator,a dynamic model combing the rigid machine,the isolator,and the flexible plate is derived through multi subsystem modeling method and transfer matrix method,whose accuracy is verified through the finite element method.The influences of the aperiodicity and damping of the isolator on the vibration isolation performance and internal resonances suppression effect are investigated by numerical analysis.The numerical results demonstrate that vibration attenuation performances of the periodic isolator and aperiodic isolator are greatly over than that of the continuous isolator in middle and high frequencies.The aperiodic isolator opens the stop bandgaps comparing with the periodic isolator where the pass bandgaps are periodically existed.The damping of the isolator has the stop bandgap widening effect on both the periodic isolator and the aperiodic isolator.In addition,a parameter optimization algorithm of the aperiodic isolator is presented for improving the internal resonances control effect.It is shown that the vibration peaks within the target frequency band of the aperiodic isolator are effectively reduced after the optimization.Finally,the experiments of the three different vibration isolation systems are conducted for verifying the analysis work.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFA1404201)the National Natural Science Foundation of China(Grant Nos.62020106014,92165106,62175140,12074234,and 11974331)the Applied Basic Research Project of Shanxi Province,China(Grant No.202203021224001)。
文摘Interactions between atoms in ultracold quantum gases play an important role in the study of the quantum simulation of many-body physics.Feshbach resonance is a versatile tool to control atomic interactions,where the atom-loss spectra are widely used to characterize Feshbach resonances of various atomic species.Here,we report the experimental observation of momentum-induced broadening of widths in atom-loss spectra of narrow ^(133)Cs Feshbach resonances.We drive Bragg excitation to kick the Bose-Einstein condensate of Cs atoms in a cigar-shaped optical trap,and measure the atom-loss spectra of narrow Feshbach resonances of moving ultracold atoms near the magnetic fields 19.84 G and 47.97 G.We show that the widths of the atom-loss spectra are broadened for the atoms with the momenta of 2hk,and 4hk,and even observe splitting in the Feshbach resonance of the atoms with momentum 4hk.Our work may open the way for exploring the interesting physical phenomena arising from the collective velocity of colliding atoms that have been ignored in general.
文摘A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.
基金supported by the National Natural Science Foundation of China(Grant No.12347101).
文摘Using periodic refractive index perturbations,the Brillouin zone is folded,transforming the guided modes in a metasurface into guided resonances with arbitrarily high quality-factors.The incorporation of phase change materials within the metasurface enables dynamic modulation of the guided modes.The system’s symmetry ensures a polarization-independent response under normal incidence.Furthermore,the metasurface exhibits excellent sensing performance,demonstrating its potential for advanced photonic applications.
基金supported by the National Key Research and Development Program(MOST 2023YFA1606404 and MOST 2022YFA1602303)the National Natural Science Foundation of China(Nos.12347106,12147101,and 12447122)the China Postdoctoral Science Foundation(No.2024M760489).
文摘To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The RBM,constructed via eigenvector continuation and trained on both bound and resonant configurations,enables the fast and accurate emulation of resonance properties across the parameter space.To identify the physical resonant states from the emulator’s output,we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts.By applying this framework to unbound nucleus ^(6)Be,we quantified the model uncertainty in the predicted complex energies.The results demonstrate relative errors of 17.48%in the real part and 8.24%in the imaginary part,while achieving a speedup of four orders of magnitude compared with the full GCC calculations.To further investigate the asymptotic behavior of the resonant-state wavefunctions within the RBM framework,we employed a Lippmann–Schwinger(L–S)-based correction scheme.This approach not only improves the consistency between eigenvalues and wavefunctions but also enables a seamless extension from real-space training data to the complex energy plane.By bridging the gap between bound-state and continuum regimes,the L–S correction significantly enhances the emulator’s capability to accurately capture continuum structures in open quantum systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12234020,12474281,12450403,and 12274461)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1193).
文摘This letter presents a method for probing the attosecond time delay between two radiatively resonant transitions from Fano structures,which arise from interference between the extreme ultraviolet free induction decay(XFID)emission and high-order harmonics.The ellipticity dependence of the Ne^(+)XFID yield confirms that the ionic excited-state populations originate from inelastic recollision between tunneling electrons and parent ions.Subsequent extraction of relative phases from Fano structures enables the determination of the time delay(~22 as)between the two decay pathways.This work provides an experimental approach to probe the attosecond time delay between different XFID channels and contributes to a deeper understanding of the tunneling-plusrescattering model in strong laser fields.
文摘The even-parity autoionizing resonance series 3p^5np′[3/2]1,2, 3p^5np′[1/2] 1, and 3p^5nf′[5/2]3 of Ar have been investigated exciting from the two metastable states 3p^54s[3/2]2 and 3p^54s′[1/2]0 in the photon energy range of 32500-35600 cm^-1 with an experimental band- width of ~0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile index and resonance widths, resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index q and the resonance widths F are shown to be approximately proportional to the effective principal quantum number n^*. The line separation of the 3p^5np′ autoionizing resonances is discussed.
文摘The research of cancer-specific resonances started with Raymond R. Rife’s controversial results. The intensive debate began on the topic, and various interpretations of the results deepened after his death. This theme presently sparks desperate debates with extreme opinions, from the dangerous quackery to the brilliant discovery. A part of medical practices applies the resonance principle in various anticancer therapies and uses a variety of devices. Most medical experts refuse such “resonance therapies” due to their confidence in their quackery. I summarized some present problems and proposed a possible solution. My present article aims to discuss some aspects of the biological resonances, trying to clear some vague details of this subject and give a possible stochastic explanation of some resonances in cancer therapy. However, when considering the stochastic explanations of resonance frequencies, there are as many of these as there are enzymatic processes affecting the biological systems.
基金supported by National Natural Science Foundation of China (Grant No 10765004)Science and Technology Foundation of Jiangxi Education Bureau,China
文摘This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different temperatures and chemical potentials, and they are perfectly thermally insulated from each other and interaction only via a double 'idealized energy filter' whose widths are all finite. Taking advantage of the density of state and Fermi distribution in the 1D system, the heat flux into each reservoir may then be calculated. Moreover, the coefficient of performance may be derived from the expressions for the heat flux into the hot and cold reservoirs. The performance characteristic curves are plotted by numerical analysis. The influences of the resonances widths, the energy position of resonance and the space of two resonances on performance of the ESE refrigerator are discussed. The results obtained here have theoretical significance for the understanding of thermodynamic performance of the micro-nano devices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10765004 and 11065008)
文摘Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.
基金This work is supported by the National Natural Science Foundation of China (No.21303212 and No.21573209), the Ministry of Science and Technology of China (No.2013CB834602).
文摘Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.
基金supported by the National Natural Science Foundation of China(No.U2032141)the Natural Science Foundation of Henan Province(No.202300410479,No.202300410480)+1 种基金the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.
文摘A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anisotropic double- slit split-ring-resonator-based unit cells printed on top of a dielectric substrate, backed by metallic cladding. The proposed metasurface converts an x- or y-polarized wave into its orthogonal polarization over a fractional bandwidth of 100% from 5- 15 GHz, both for normal as well as oblique incidence. Moreover, the sub-wavelength unit-cell size, thin dielectric substrate, and unique unit-cell design collectively make the response of the metasurface same for both polarizations and insensitive to the incidence angle. The designed structure is fabricated and tested. The measurement and simulation results are found to be consistent with each other.
基金Supported by the National Innovative Projects for College Students under Grant No 201310320025the National Natural Science Foundation of China under Grant Nos 61401182 and 61372057the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements.
基金Project supported by the National Key Basic Research and Development Program of China (Grant Nos.2009CB930700 and 2012YQ12006005)the National Natural Science Foundation of China (Grant Nos.11134013,11227407,and 11004237)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No.KJCX2-EW-W04)
文摘Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances (LSPRs) are red-shifted exponentially with the increase of the dielectric shell thickness. This is due to the exponential decay of electromagnetic field intensity in the direction perpendicular to the interface. This exponential red-shift depends on the wavelength of the resonance peak instead of the resonance order. In addition, we find that the LSPRs in an Ag nanorice of 60-nm width can be perfectly described by a single linear function. These features make nanorice an ideal platform for sensing applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674275,11601469,and 61505174)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2016203282,C2014203212,and E2016203185)the Science and Technology Research Project of Hebei Higher Education Institutions,China(Grant No.QN2018071)
文摘Multiple Fano resonances of plasmonic nanostructures have attracted much attention due to their potential applications in multicomponent biosensing. In this paper, we propose a series of hybridized nanostructures consisting of a single nanoring and multiple nanorods to generate multiple Fano resonances. One to three Fano resonances are achieved through tuning the number of nanorods. The interaction coupling process between different components of the nanostructures is recognized as the mechanism of multiple Fano resonances. We also theoretically investigate the applications of the produced multiple Fano resonances in refractive index sensing. The specific properties of multiple Fano resonances will make our proposed nanostructures beneficial to high-sensitivity biosensors.
基金Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0301300the National Natural Science Foundation of China under Grant Nos 11374041 and 11574035the State Key Laboratory of Information Photonics and Optical Communications
文摘A symmetric plasmonie structure consisting of metal-insulator metal waveguide, groove studied, which supports double Fano resonances deriving from two different mechanisms and slot cavities is One of the Fano resonances originates from the interference between the resonances of groove and slot cavities, and the other comes from the interference between slot cavities. The spectral line shapes and the peaks of the double Fano resonances can be modulated by changing the length of the slot cavities and the height of the groove. Furthermore, the wavelength of the resonance peak has a linear relationship with the length of the slot cavities. The proposed plasmonic nanosensor possesses a sensitivity of 800nm/RIU and a figure of merit of 3150, which may have important applications in switches, sensors, and nonlinear devices.
文摘Considering the geometric nonlinearity due to the large elastic deformations of flexible links, the superharmonic resonances of elastic linkages in the forms of ω1/3 and ω1/2 are studied by the method of multiple scales. The research shows that the analytical results are coincident with the experimental results.
文摘The even-parity autoionizing resonance series 5p^5np' [3/2]1, [1/2]1, and 5p^5nf' [5/2]3 of xenon have been investigated, excited from the two metastable states 5p^56s [3/2]2 and 5p^56s' [1/2]0 in the photon energy range of 28000-42000 cm^-1 with experimental bandwidth of -0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index and the resonance width are shown to be approximately proportional to the effective principal quantum number. The line separation of the 5p^5np' autoionizing resonances is discussed.
文摘This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.