Purpose: To increase the efficiency of densely encoded magnetization transfer imaging of the brain, we time-multiplex multiple slices within the same readout using simultaneous echo refocusing FLASH imaging with magne...Purpose: To increase the efficiency of densely encoded magnetization transfer imaging of the brain, we time-multiplex multiple slices within the same readout using simultaneous echo refocusing FLASH imaging with magnetization transfer (MT) preparation (MT-SER-FLASH). Materials and Methods: Inefficiency in total scan time results from the number of frequency samples needed for sufficient quality of quantitative parameter maps for a binary spin bath model. We present a highly efficient multiplexing method, simultaneous echo refocused magnetization transfer imaging (MT-SER-FLASH) for reducing the total scan time of MT imaging by one-third. The specific absorption rate (SAR) was also reduced by reducing the number of MT-pulses per volume. Results: 2D-MT-SER-FLASH is performed in 19 minutes rather than 1 hour, acceptable for routine clinical application. The SAR could be reduced to 69% instead of more than 100% with a standard 2D or 3D-FLASH with MT-preparation. Conclusion: The net reduction of scan time and SAR enables the use of quantitative model based magnetization transfer imaging within a clinical environment.展开更多
The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during t...The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during the second pulse irradiation on the crater induced by the first pulse, the expansion of the plasma and shockwave is enhanced in the longitudinal direction. The plasma model and Fresnel diffraction theory are combined to calculate the laser intensity distribution by considering the change in surface morphology and transient material properties. The theoretical results show that after the free electron density induced by the rising edge of the pulse reaches the critical density, the originally transparent surface is transformed into a transient high-reflectivity surface(metallic state). Thus, the crater with a concave-lens-like morphology can tremendously reflect and refocus the latter part of the laser pulse, leading to a strong laser field with an intensity even higher than the incident intensity. This strong refocused laser pulse results in a stronger laser-induced air breakdown and enhances the subsequent expansion of the plasma and shockwave. In addition, similar shadowgraphs are also recorded in the single-pulse ablation of a concave microlens, providing experimental evidence for the enhancement mechanism.展开更多
针对大视场红外相机在轨调焦时受大气条件、地物丰富度、月相角等因素影响导致对地调焦和对月调焦周期长、效率低的问题,文章提出一种基于星点亚像元误差补偿的红外相机在轨检焦方法,通过对未经大气退化的星点图像进行精准质心定位提取...针对大视场红外相机在轨调焦时受大气条件、地物丰富度、月相角等因素影响导致对地调焦和对月调焦周期长、效率低的问题,文章提出一种基于星点亚像元误差补偿的红外相机在轨检焦方法,通过对未经大气退化的星点图像进行精准质心定位提取清晰度评价指标,有效规避外界因素的影响,提升在轨检焦效率,保障在轨检焦精度。首先对星点图像分别采用自适应阈值质心法和高斯拟合法提取质心估计值;依据图像信噪比、星点目标能量集中度确定最佳因子,构建误差补偿模型进行精确质心定位;再提取图像点扩散函数的波形半高宽(Full Width at Half Maximum,FWHM)作为在轨检焦清晰度评价指标;设置不同谱段、不同能量集中度的星点红外图像作为在轨检焦图像,分别采用质心法、高斯拟合法及星点亚像元误差补偿方法进行目标质心提取并估计FWHM,实验结果表明:三种方法的质心提取平均误差分别为0.1195、0.0107、0.0027,均方根误差分别为0.1210、0.0124、0.0085,星点亚像元误差补偿方法质心提取误差最小,稳定性最好。能量集中度为0.4~0.8之间时,采用星点亚像元误差补偿方法质心提取平均误差均小于0.01,优于其他方法。在此基础上,采用该方法提取的FWHM平均精度提升了三倍以上,且不受星点质心位置随机性的影响,对于实现基于恒星的在轨检焦具有较高的可靠性和稳定性,满足在轨检焦要求。展开更多
文摘Purpose: To increase the efficiency of densely encoded magnetization transfer imaging of the brain, we time-multiplex multiple slices within the same readout using simultaneous echo refocusing FLASH imaging with magnetization transfer (MT) preparation (MT-SER-FLASH). Materials and Methods: Inefficiency in total scan time results from the number of frequency samples needed for sufficient quality of quantitative parameter maps for a binary spin bath model. We present a highly efficient multiplexing method, simultaneous echo refocused magnetization transfer imaging (MT-SER-FLASH) for reducing the total scan time of MT imaging by one-third. The specific absorption rate (SAR) was also reduced by reducing the number of MT-pulses per volume. Results: 2D-MT-SER-FLASH is performed in 19 minutes rather than 1 hour, acceptable for routine clinical application. The SAR could be reduced to 69% instead of more than 100% with a standard 2D or 3D-FLASH with MT-preparation. Conclusion: The net reduction of scan time and SAR enables the use of quantitative model based magnetization transfer imaging within a clinical environment.
基金National Natural Science Foundation of China(NSFC)(51605029,91323301)
文摘The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during the second pulse irradiation on the crater induced by the first pulse, the expansion of the plasma and shockwave is enhanced in the longitudinal direction. The plasma model and Fresnel diffraction theory are combined to calculate the laser intensity distribution by considering the change in surface morphology and transient material properties. The theoretical results show that after the free electron density induced by the rising edge of the pulse reaches the critical density, the originally transparent surface is transformed into a transient high-reflectivity surface(metallic state). Thus, the crater with a concave-lens-like morphology can tremendously reflect and refocus the latter part of the laser pulse, leading to a strong laser field with an intensity even higher than the incident intensity. This strong refocused laser pulse results in a stronger laser-induced air breakdown and enhances the subsequent expansion of the plasma and shockwave. In addition, similar shadowgraphs are also recorded in the single-pulse ablation of a concave microlens, providing experimental evidence for the enhancement mechanism.
文摘针对大视场红外相机在轨调焦时受大气条件、地物丰富度、月相角等因素影响导致对地调焦和对月调焦周期长、效率低的问题,文章提出一种基于星点亚像元误差补偿的红外相机在轨检焦方法,通过对未经大气退化的星点图像进行精准质心定位提取清晰度评价指标,有效规避外界因素的影响,提升在轨检焦效率,保障在轨检焦精度。首先对星点图像分别采用自适应阈值质心法和高斯拟合法提取质心估计值;依据图像信噪比、星点目标能量集中度确定最佳因子,构建误差补偿模型进行精确质心定位;再提取图像点扩散函数的波形半高宽(Full Width at Half Maximum,FWHM)作为在轨检焦清晰度评价指标;设置不同谱段、不同能量集中度的星点红外图像作为在轨检焦图像,分别采用质心法、高斯拟合法及星点亚像元误差补偿方法进行目标质心提取并估计FWHM,实验结果表明:三种方法的质心提取平均误差分别为0.1195、0.0107、0.0027,均方根误差分别为0.1210、0.0124、0.0085,星点亚像元误差补偿方法质心提取误差最小,稳定性最好。能量集中度为0.4~0.8之间时,采用星点亚像元误差补偿方法质心提取平均误差均小于0.01,优于其他方法。在此基础上,采用该方法提取的FWHM平均精度提升了三倍以上,且不受星点质心位置随机性的影响,对于实现基于恒星的在轨检焦具有较高的可靠性和稳定性,满足在轨检焦要求。