BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicate...BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
目的 探究驱动蛋白家族成员2A(kinesin family member 2A,KIF2A)对肝癌细胞5-FU耐药的作用及其作用机制。方法 采用浓度梯度递增联合大剂量间断冲击的方法诱导肝癌细胞BEL7402对5-FU耐药,以构建耐药株BEL7402/5-FU。采用慢病毒技术构建K...目的 探究驱动蛋白家族成员2A(kinesin family member 2A,KIF2A)对肝癌细胞5-FU耐药的作用及其作用机制。方法 采用浓度梯度递增联合大剂量间断冲击的方法诱导肝癌细胞BEL7402对5-FU耐药,以构建耐药株BEL7402/5-FU。采用慢病毒技术构建KIF2A沉默的BEL7402/5-FU细胞。用Notch1/Hes1信号通路激动剂丙戊酸(valproic acid,VPA)对KIF2A沉默的BEL7402/5-FU细胞进行干预。用CCK-8实验、蛋白印迹法、免疫荧光、流式细胞术检测细胞活性、细胞凋亡率、KIF2A、cleaved-caspase-3、Notch1和Hes1的蛋白表达。结果 BEL7402/5-FU细胞具有强5-FU耐药性,其IC_(50)为344.2μmol/L,是BEL7402细胞的92倍(IC_(50)=3.730μmol/L)。与BEL7402细胞比较,BEL7402/5-FU细胞中KIF2A蛋白表达明显增加(P<0.001);与si-NC组比较,si-KIF2A组BEL7402/5-FU细胞活性明显下降(P<0.001)、凋亡率和cleaved-caspase-3蛋白表达明显增加(P<0.001),另外Notch1和Hes1蛋白表达明显减少(P<0.001);与si-NC+5-FU组比较,si-KIF2A+5-FU组BEL7402/5-FU细胞活性显著下降(P<0.001)、凋亡率显著增加(P<0.001);与si-KIF2A+5-FU组比较,si-KIF2A+5-FU+VPA组BEL7402/5-FU细胞活性明显提高(P<0.001)、凋亡率显著降低(P<0.001)、Notch1和Hes1蛋白表达量显著增加(P<0.001)。结论 KIF2A的沉默通过抑制Notch1/Hes1信号通路活性减弱BEL7402/5-FU细胞对5-FU的化疗耐药性。展开更多
Different from reversible agonist-stimulated receptor activation,singlet oxygen oxidation activates permanently G protein-coupled receptor(GPCR)cholecystokinin 1(CCK1R)in type II photodynamic action,with soluble photo...Different from reversible agonist-stimulated receptor activation,singlet oxygen oxidation activates permanently G protein-coupled receptor(GPCR)cholecystokinin 1(CCK1R)in type II photodynamic action,with soluble photosensitizer dyes(sulphonated aluminum phthalocyanine,λmax 675 nm)or genetically encoded protein photosensitizers(KillerRedλmax 585 nm;mini singlet oxygen generatorλmax 450 nm),together with a pulse of light(37 mW/cm2,1-2 minutes).Three lines of evidence shed light on the mechanism of GPCR activated by singlet oxygen(GPCR-ABSO):(1)CCK1R is quantitatively converted from dimer to monomer;(2)Transmembrane domain 3,a pharmacophore for permanent photodynamic CCK1R activation,can be transplanted to non-susceptible M3 acetylcholine receptor;and(3)Larger size of disordered region in intracellular loop 3 correlates with higher sensitivity to photodynamic CCK1R activation.GPCR-ABSO will add to the arsenal of engineered designer GPCR such as receptors activated solely by synthetic ligands and designer receptors exclusively activated by designer drugs,but show some clear advantages:Enhanced selectivity(double selectivity of localized photosensitizer and light illumination),long-lasting activation with no need for repeated drug administration,antagonist-binding site remains intact when needed,ease to apply to multiple GPCR.This type of permanent photodynamic activation may be applied to functional proteins other than GPCR.展开更多
BACKGROUND Epidermal growth factor receptor(EGFR)is a transmembrane protein that is differentially expressed in gestational diabetes mellitus(GDM).Endothelial dy-sfunction is a hallmark of GDM and plays a key role in ...BACKGROUND Epidermal growth factor receptor(EGFR)is a transmembrane protein that is differentially expressed in gestational diabetes mellitus(GDM).Endothelial dy-sfunction is a hallmark of GDM and plays a key role in its pathogenesis.EGFR is associated with endothelial dysfunction in the context of various diseases.How-ever,the exact mechanism by which EGFR causes endothelial dysfunction in GDM is unknown,particularly its regulation at the transcriptional and protein levels.METHODS Quantitative real-time polymerase chain reaction was used to detect the ex-pression of EGFR and H19.Western blotting was used to detect the expression of endothelial cell dysfunction markers.A cell counting kit 8 assay was used to assess cell viability,flow cytometry was used to assess apoptosis,scratch and Transwell assays were used to assess cell migration,and a tube formation assay was used to assess cell vascular formation.Hematoxylin-eosin staining was used to observe histopathological changes in the placentas of the mice.RESULTS In this study,EGFR was upregulated in clinical samples,GDM animal models and GDM cell models,and the knockdown of EGFR could mitigate the effect of streptozotocin(STZ)and high glucose(HG);promoted the proliferation,migration and vascularization of human umbilical vein endothelial cells(HUVECs);inhibited cell apoptosis and the expression of endothelial cell dysfunction markers(vascular cell adhesion molecule-1,tumor necrosis factor-α,vascular endothelial growth factor-A,and intercellular cell adhesion molecule-1);and alleviated the process of GDM in vivo.Mechanistically,EIF4A3 binding to long noncoding RNA H19 increased the stability of EGFR messenger RNA,thereby promoting HG-induced HUVECs dysfunction or STZ-induced endothelial cell dysfunction in GDM mice.In addition,ERRFI1 also regulated the expression of EGFR,and ERRFI1 inhibited EGFR activity by binding to EGFR,thereby inhibiting HG-induced HUVECs dysfunction.CONCLUSION Our study revealed that EGFR can accelerate the development of GDM by promoting endothelial cell dysfunction.展开更多
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
基金Supported by Hebei Province Medical Science Research Project Plan,No.20230755.
文摘BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
文摘目的 探究驱动蛋白家族成员2A(kinesin family member 2A,KIF2A)对肝癌细胞5-FU耐药的作用及其作用机制。方法 采用浓度梯度递增联合大剂量间断冲击的方法诱导肝癌细胞BEL7402对5-FU耐药,以构建耐药株BEL7402/5-FU。采用慢病毒技术构建KIF2A沉默的BEL7402/5-FU细胞。用Notch1/Hes1信号通路激动剂丙戊酸(valproic acid,VPA)对KIF2A沉默的BEL7402/5-FU细胞进行干预。用CCK-8实验、蛋白印迹法、免疫荧光、流式细胞术检测细胞活性、细胞凋亡率、KIF2A、cleaved-caspase-3、Notch1和Hes1的蛋白表达。结果 BEL7402/5-FU细胞具有强5-FU耐药性,其IC_(50)为344.2μmol/L,是BEL7402细胞的92倍(IC_(50)=3.730μmol/L)。与BEL7402细胞比较,BEL7402/5-FU细胞中KIF2A蛋白表达明显增加(P<0.001);与si-NC组比较,si-KIF2A组BEL7402/5-FU细胞活性明显下降(P<0.001)、凋亡率和cleaved-caspase-3蛋白表达明显增加(P<0.001),另外Notch1和Hes1蛋白表达明显减少(P<0.001);与si-NC+5-FU组比较,si-KIF2A+5-FU组BEL7402/5-FU细胞活性显著下降(P<0.001)、凋亡率显著增加(P<0.001);与si-KIF2A+5-FU组比较,si-KIF2A+5-FU+VPA组BEL7402/5-FU细胞活性明显提高(P<0.001)、凋亡率显著降低(P<0.001)、Notch1和Hes1蛋白表达量显著增加(P<0.001)。结论 KIF2A的沉默通过抑制Notch1/Hes1信号通路活性减弱BEL7402/5-FU细胞对5-FU的化疗耐药性。
基金Supported by the National Natural Science Foundation of China,No.32271278 and No.31971170.
文摘Different from reversible agonist-stimulated receptor activation,singlet oxygen oxidation activates permanently G protein-coupled receptor(GPCR)cholecystokinin 1(CCK1R)in type II photodynamic action,with soluble photosensitizer dyes(sulphonated aluminum phthalocyanine,λmax 675 nm)or genetically encoded protein photosensitizers(KillerRedλmax 585 nm;mini singlet oxygen generatorλmax 450 nm),together with a pulse of light(37 mW/cm2,1-2 minutes).Three lines of evidence shed light on the mechanism of GPCR activated by singlet oxygen(GPCR-ABSO):(1)CCK1R is quantitatively converted from dimer to monomer;(2)Transmembrane domain 3,a pharmacophore for permanent photodynamic CCK1R activation,can be transplanted to non-susceptible M3 acetylcholine receptor;and(3)Larger size of disordered region in intracellular loop 3 correlates with higher sensitivity to photodynamic CCK1R activation.GPCR-ABSO will add to the arsenal of engineered designer GPCR such as receptors activated solely by synthetic ligands and designer receptors exclusively activated by designer drugs,but show some clear advantages:Enhanced selectivity(double selectivity of localized photosensitizer and light illumination),long-lasting activation with no need for repeated drug administration,antagonist-binding site remains intact when needed,ease to apply to multiple GPCR.This type of permanent photodynamic activation may be applied to functional proteins other than GPCR.
基金Supported by the Youth Talent Program of Yunnan“Ten-thousand Talents Program”,No.YNWR-QNBJ-2018-169the Science Project of Yunnan Science and Technology Department,No.202201AY070001-068.
文摘BACKGROUND Epidermal growth factor receptor(EGFR)is a transmembrane protein that is differentially expressed in gestational diabetes mellitus(GDM).Endothelial dy-sfunction is a hallmark of GDM and plays a key role in its pathogenesis.EGFR is associated with endothelial dysfunction in the context of various diseases.How-ever,the exact mechanism by which EGFR causes endothelial dysfunction in GDM is unknown,particularly its regulation at the transcriptional and protein levels.METHODS Quantitative real-time polymerase chain reaction was used to detect the ex-pression of EGFR and H19.Western blotting was used to detect the expression of endothelial cell dysfunction markers.A cell counting kit 8 assay was used to assess cell viability,flow cytometry was used to assess apoptosis,scratch and Transwell assays were used to assess cell migration,and a tube formation assay was used to assess cell vascular formation.Hematoxylin-eosin staining was used to observe histopathological changes in the placentas of the mice.RESULTS In this study,EGFR was upregulated in clinical samples,GDM animal models and GDM cell models,and the knockdown of EGFR could mitigate the effect of streptozotocin(STZ)and high glucose(HG);promoted the proliferation,migration and vascularization of human umbilical vein endothelial cells(HUVECs);inhibited cell apoptosis and the expression of endothelial cell dysfunction markers(vascular cell adhesion molecule-1,tumor necrosis factor-α,vascular endothelial growth factor-A,and intercellular cell adhesion molecule-1);and alleviated the process of GDM in vivo.Mechanistically,EIF4A3 binding to long noncoding RNA H19 increased the stability of EGFR messenger RNA,thereby promoting HG-induced HUVECs dysfunction or STZ-induced endothelial cell dysfunction in GDM mice.In addition,ERRFI1 also regulated the expression of EGFR,and ERRFI1 inhibited EGFR activity by binding to EGFR,thereby inhibiting HG-induced HUVECs dysfunction.CONCLUSION Our study revealed that EGFR can accelerate the development of GDM by promoting endothelial cell dysfunction.
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.