In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTR...In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTRE(+) by an initial distribution Φ and a random Markov kernel (RMK) p(γ). In Section 3, the authors es-tablish several equivalence theorems on MCSTRE and MCSTRE(+). Finally, the authors give two very important examples of MCMSTRE, the random walk in spce-time random environment and the Markov br...展开更多
The water exchange matrix is an efficient tool to study the water exchange among the sub-areas in large-scale bays. The application of the random walk method to calculate the water exchange matrix is studied. Compared...The water exchange matrix is an efficient tool to study the water exchange among the sub-areas in large-scale bays. The application of the random walk method to calculate the water exchange matrix is studied. Compared with the advection-diffusion model, the random walk model is more flexible to calculate the water exchange matrix. The forecast matrix suggested by Thompson et al. is used to evaluate the water exchange characteristics among the sub-areas fast. According to the theoretic analysis, it is found that the precision of the predicted results is mainly affected by three factors, namely, the particle number, the generated time of the forecast matrix, and the number of the sub-areas. The impact of the above factors is analyzed based on the results of a series of numerical tests. The results show that the precision of the forecast matrix increases with the increase of the generated time of the forecast matrix and the number of the particles. If there are enough particles in each sub-area, the precision of the forecast matrix will increase with the number of the sub-areas. Moreover, if the particles in each sub-area are not enough, the excessive number of the sub-areas can result in the decrease of the precision of the forecast matrix.展开更多
基金Supported by the National Natural Science Foundation of China (10771185 and 10871200)
文摘In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTRE(+) by an initial distribution Φ and a random Markov kernel (RMK) p(γ). In Section 3, the authors es-tablish several equivalence theorems on MCSTRE and MCSTRE(+). Finally, the authors give two very important examples of MCMSTRE, the random walk in spce-time random environment and the Markov br...
基金supported by the National Natural Science Foundation of China(No.10702050)
文摘The water exchange matrix is an efficient tool to study the water exchange among the sub-areas in large-scale bays. The application of the random walk method to calculate the water exchange matrix is studied. Compared with the advection-diffusion model, the random walk model is more flexible to calculate the water exchange matrix. The forecast matrix suggested by Thompson et al. is used to evaluate the water exchange characteristics among the sub-areas fast. According to the theoretic analysis, it is found that the precision of the predicted results is mainly affected by three factors, namely, the particle number, the generated time of the forecast matrix, and the number of the sub-areas. The impact of the above factors is analyzed based on the results of a series of numerical tests. The results show that the precision of the forecast matrix increases with the increase of the generated time of the forecast matrix and the number of the particles. If there are enough particles in each sub-area, the precision of the forecast matrix will increase with the number of the sub-areas. Moreover, if the particles in each sub-area are not enough, the excessive number of the sub-areas can result in the decrease of the precision of the forecast matrix.