Background With the increasing prominence of hand and finger motion tracking in virtual reality(VR)applications and rehabilitation studies,data gloves have emerged as a prevalent solution.In this study,we developed an...Background With the increasing prominence of hand and finger motion tracking in virtual reality(VR)applications and rehabilitation studies,data gloves have emerged as a prevalent solution.In this study,we developed an innovative,lightweight,and detachable data glove tailored for finger motion tracking in VR environments.Methods The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system,facilitating precise and natural hand gestures for interaction with VR applications.Initially,we calibrated the potentiometer to align with the actual finger bending angle,and verified the accuracy of angle measurements recorded by the data glove.To verify the precision and reliability of our data glove,we conducted repeatability testing for flexion(grip test)and extension(flat test),with 250 measurements each,across five users.We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data.Furthermore,we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.Conclusions The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions.This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols.In these experiments,users navigated and engaged with virtual objects,underlining the glove's exact tracking of finger motion.Furthermore,the proposed data glove exhibited a low response time of 17-34 ms and back-drive force of only 0.19 N.Additionally,according to a comfort evaluation using the Comfort Rating Scales,the proposed glove system is wearable,placing it at the WL1 level.展开更多
目的:研究O-GlcNAcylation调节蛋白激酶C受体1(receptor for activated C kinase 1,Rack1)的稳定性在SHH型髓母细胞瘤(SHH type medulloblastoma,SHH-MB)形成中的功能作用。方法:选取中国人民解放军西部战区总医院临床肿瘤标本库中分子...目的:研究O-GlcNAcylation调节蛋白激酶C受体1(receptor for activated C kinase 1,Rack1)的稳定性在SHH型髓母细胞瘤(SHH type medulloblastoma,SHH-MB)形成中的功能作用。方法:选取中国人民解放军西部战区总医院临床肿瘤标本库中分子分型所确定的SHH-MB肿瘤及癌旁组织,分析样本中Rack1和O-GlcNAcylation(O-Glc NAc)的表达水平差异。对于人源髓母细胞瘤细胞系Daoy使用糖基化转移酶(OGT)抑制剂(OSMI-1)和去糖基化转移酶(OGA)抑制剂(TM-G)进行处理,通过Cell Counting Kit-8(CCK-8)法和免疫荧光染色检测肿瘤细胞增殖能力。采用O-Glc NAc酶标记系统、免疫共沉淀(Co-IP)和Western blot法判断Rack1有无发生O-Glc NAc,而后通过环己酰亚胺(CHX)实验和泛素化修饰实验证实O-GlcNAcylation对Rack1蛋白水平的影响。构建敲低Rack1的髓母细胞瘤模型,通过Cell Counting Kit-8(CCK-8)法、免疫荧光染色和划痕实验检测肿瘤细胞增殖能力。同时通过在免疫缺陷型小鼠进行异种原位肿瘤移植进行验证,在所得组织样本中(sh-NC和shRack1)使用Western blot检测下游SHH信号通路变化。结果:Rack1和O-GlcNAcylation在SHH-MB中表达水平显著增高,且Rack1表达水平和患者生存率呈负相关关系。对Daoy细胞系使用OSMI-1、TM-G处理后,发现O-Glc NAc能明显促进Daoy细胞增殖,而抑制细胞O-GlcNAc则抑制细胞增殖。分子实验证实Rack1蛋白O-GlcNAcylation可以调节其蛋白稳定性,进而促进肿瘤细胞增殖。在Daoy细胞系敲低Rack1表达,其细胞增殖能力明显低于对照组;在动物水平方面,相较于对照组,Rack1蛋白敲低的肿瘤组织增殖受到显著抑制。并且Rack1可通过调节SHH信号通路参与SHH-MB形成。结论:O-GlcNAcylation可通过调节Rack1蛋白的稳定性进而参与SHH-MB形成。展开更多
LOKIBASE is a non-linear isolator/dissipator device to protect pallet racking systems against the earthquake.LOKIBASE consists of the following main components:(1)two slider devices on which a rubber membrane is set u...LOKIBASE is a non-linear isolator/dissipator device to protect pallet racking systems against the earthquake.LOKIBASE consists of the following main components:(1)two slider devices on which a rubber membrane is set up(LOKI devices).LOKI devices are linear displacement dependent ones;(2)a cylindrical beam damper(“CANDLE”device).The“CANDLE”device is a non-linear displacement dependent one;(3)two anti-lifting devices(“UP-LIFT”devices);(4)a fuse plug(see www.lokibasedevice.com).The main work which is the purpose of the paper,is the optimization of the behavior of an isolator/dissipator device to mitigate the seismic action on special structures,where the stiffness values are very different in the main cross-aisle and down-aisle directions.Under seismic action,in these structures it is very important to reduce the value of the forces at the Limit state for the safeguard of human life(SLV)in the down-aisle direction as much as possible and simultaneously to use the highest damping value allowed by the building rules to reduce the LOKIBASE displacement at the Limit state for collapse prevention(SLC)in the cross-aisle direction.The goal was achieved through a cylindrical device made of stainless steel(AISI304)with an optimized shape,under large displacement during seismic action.展开更多
Covalent organic frameworks(COFs)are two-(2D)or threedimensional(3D)crystalline,porous networks generated by reversible polymerization of organic building blocks[1,2].The structures and functionalities of COFs are pre...Covalent organic frameworks(COFs)are two-(2D)or threedimensional(3D)crystalline,porous networks generated by reversible polymerization of organic building blocks[1,2].The structures and functionalities of COFs are precisely controlled via appropriately selected organic building blocks.This design imparts unique properties to COFs,including exceptional structural stability,tunable pore structure,and surface chemical activity,making them promising for gas separation,catalysis,optoelectronics,and sensing applications.Since Yaghi et al.'s seminal report on COFs in 2005[2],these frameworks have swiftly emerged as a hotspot in the field of materials.Originally,the focus was on fabricating rigid frameworks with static structures and optoelectronic properties.However,the inherently static nature of these frameworks hinders their responsiveness to external stimuli,potentially constraining their functionality in specific applications.Hence,an increasing number of researchers are now directing their attention toward the development of dynamic COFs capable of modifying their structures in response to external stimuli[3].Specifically,dynamic 2D COFs exhibiting enhanced structural responsiveness are of particular interest due to their capability to integrate switchable geometries and porosities with semiconductor building blocks,as well as electron conjugation across COF layers and π-stacked columns,which may enable stimuli-responsive electronic and spin properties[4].展开更多
The receptor for activated C kinase 1(RACK1)is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease(AD),a prevalent neurodegenerative disease...The receptor for activated C kinase 1(RACK1)is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease(AD),a prevalent neurodegenerative disease.RACK1 is highly expressed in neuronal cells of the central nervous system and regulates the pathogenesis of AD.Specifically,RACK1 is involved in regulation of the amyloid-β precursor protein processing through α-or β-secretase by binding to different protein kinase C isoforms.Additionally,RACK1 promotes synaptogenesis and synaptic plasticity by inhibiting N-methyl-D-aspartate receptors and activating gamma-aminobutyric acid A receptors,thereby preventing neuronal excitotoxicity.RACK1 also assembles inflammasomes that are involved in various neuroinflammatory pathways,such as nuclear factor-kappa B,tumor necrosis factor-alpha,and NOD-like receptor family pyrin domain-containing 3 pathways.The potential to design therapeutics that block amyloid-β accumulation and inflammation or precisely regulate synaptic plasticity represents an attractive therapeutic strategy,in which RACK1 is a potential target.In this review,we summarize the contribution of RACK1 to the pathogenesis of AD and its potential as a therapeutic target.展开更多
活化的蛋白激酶C受体l(receptor for activated C kinase1,RACKl)广泛分布于真核生物和原核生物中,在生物体内具有极其重要的调节功能。本实验利用RT-PCR和RACE的方法扩增获得了棉铃虫Helicoverpa armigera (Hübner)RACK1基因全序...活化的蛋白激酶C受体l(receptor for activated C kinase1,RACKl)广泛分布于真核生物和原核生物中,在生物体内具有极其重要的调节功能。本实验利用RT-PCR和RACE的方法扩增获得了棉铃虫Helicoverpa armigera (Hübner)RACK1基因全序列,序列分析结果表明,该基因开放阅读框为957bp,编码319个氨基酸残基。5'端非编码区长为36bp,3'端非编码区长为112bp。发育时相表达发现RACK1基因在棉铃虫的蜕皮时期大量表达,进一步的激素处理实验发现,蜕皮激素诱导RACK1基因表达,保幼激素和饥饿抑制RACK1基因表达。这些研究结果为进一步研究RACK1基因的功能奠定基础。展开更多
基金Supported by the Sirindhorn International Institute of Technology,Thammasat University,EFS-G(Excellent foreign Student-Graduate)research fund.
文摘Background With the increasing prominence of hand and finger motion tracking in virtual reality(VR)applications and rehabilitation studies,data gloves have emerged as a prevalent solution.In this study,we developed an innovative,lightweight,and detachable data glove tailored for finger motion tracking in VR environments.Methods The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system,facilitating precise and natural hand gestures for interaction with VR applications.Initially,we calibrated the potentiometer to align with the actual finger bending angle,and verified the accuracy of angle measurements recorded by the data glove.To verify the precision and reliability of our data glove,we conducted repeatability testing for flexion(grip test)and extension(flat test),with 250 measurements each,across five users.We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data.Furthermore,we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.Conclusions The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions.This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols.In these experiments,users navigated and engaged with virtual objects,underlining the glove's exact tracking of finger motion.Furthermore,the proposed data glove exhibited a low response time of 17-34 ms and back-drive force of only 0.19 N.Additionally,according to a comfort evaluation using the Comfort Rating Scales,the proposed glove system is wearable,placing it at the WL1 level.
文摘LOKIBASE is a non-linear isolator/dissipator device to protect pallet racking systems against the earthquake.LOKIBASE consists of the following main components:(1)two slider devices on which a rubber membrane is set up(LOKI devices).LOKI devices are linear displacement dependent ones;(2)a cylindrical beam damper(“CANDLE”device).The“CANDLE”device is a non-linear displacement dependent one;(3)two anti-lifting devices(“UP-LIFT”devices);(4)a fuse plug(see www.lokibasedevice.com).The main work which is the purpose of the paper,is the optimization of the behavior of an isolator/dissipator device to mitigate the seismic action on special structures,where the stiffness values are very different in the main cross-aisle and down-aisle directions.Under seismic action,in these structures it is very important to reduce the value of the forces at the Limit state for the safeguard of human life(SLV)in the down-aisle direction as much as possible and simultaneously to use the highest damping value allowed by the building rules to reduce the LOKIBASE displacement at the Limit state for collapse prevention(SLC)in the cross-aisle direction.The goal was achieved through a cylindrical device made of stainless steel(AISI304)with an optimized shape,under large displacement during seismic action.
基金supported by the National Natural Science Foundation of China(Nos.51902121 and 22372067)。
文摘Covalent organic frameworks(COFs)are two-(2D)or threedimensional(3D)crystalline,porous networks generated by reversible polymerization of organic building blocks[1,2].The structures and functionalities of COFs are precisely controlled via appropriately selected organic building blocks.This design imparts unique properties to COFs,including exceptional structural stability,tunable pore structure,and surface chemical activity,making them promising for gas separation,catalysis,optoelectronics,and sensing applications.Since Yaghi et al.'s seminal report on COFs in 2005[2],these frameworks have swiftly emerged as a hotspot in the field of materials.Originally,the focus was on fabricating rigid frameworks with static structures and optoelectronic properties.However,the inherently static nature of these frameworks hinders their responsiveness to external stimuli,potentially constraining their functionality in specific applications.Hence,an increasing number of researchers are now directing their attention toward the development of dynamic COFs capable of modifying their structures in response to external stimuli[3].Specifically,dynamic 2D COFs exhibiting enhanced structural responsiveness are of particular interest due to their capability to integrate switchable geometries and porosities with semiconductor building blocks,as well as electron conjugation across COF layers and π-stacked columns,which may enable stimuli-responsive electronic and spin properties[4].
基金supported by grants from the National Natural Science Foundation of China(Grant No.82071395)the Natural Science Foundation of Chongqing(Grant Nos.cstc2021ycjh-bgzxm0186,cstc2020jcyj-zdxmX0004,and cstc2021jcyj-bsh0023)the CQMU Program for Youth Innovation in Future Medicine(Grant No.W0044).
文摘The receptor for activated C kinase 1(RACK1)is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease(AD),a prevalent neurodegenerative disease.RACK1 is highly expressed in neuronal cells of the central nervous system and regulates the pathogenesis of AD.Specifically,RACK1 is involved in regulation of the amyloid-β precursor protein processing through α-or β-secretase by binding to different protein kinase C isoforms.Additionally,RACK1 promotes synaptogenesis and synaptic plasticity by inhibiting N-methyl-D-aspartate receptors and activating gamma-aminobutyric acid A receptors,thereby preventing neuronal excitotoxicity.RACK1 also assembles inflammasomes that are involved in various neuroinflammatory pathways,such as nuclear factor-kappa B,tumor necrosis factor-alpha,and NOD-like receptor family pyrin domain-containing 3 pathways.The potential to design therapeutics that block amyloid-β accumulation and inflammation or precisely regulate synaptic plasticity represents an attractive therapeutic strategy,in which RACK1 is a potential target.In this review,we summarize the contribution of RACK1 to the pathogenesis of AD and its potential as a therapeutic target.
文摘活化的蛋白激酶C受体l(receptor for activated C kinase1,RACKl)广泛分布于真核生物和原核生物中,在生物体内具有极其重要的调节功能。本实验利用RT-PCR和RACE的方法扩增获得了棉铃虫Helicoverpa armigera (Hübner)RACK1基因全序列,序列分析结果表明,该基因开放阅读框为957bp,编码319个氨基酸残基。5'端非编码区长为36bp,3'端非编码区长为112bp。发育时相表达发现RACK1基因在棉铃虫的蜕皮时期大量表达,进一步的激素处理实验发现,蜕皮激素诱导RACK1基因表达,保幼激素和饥饿抑制RACK1基因表达。这些研究结果为进一步研究RACK1基因的功能奠定基础。