远程终端单元(remote terminal unit, RTU)是当前电网中最主要的测量终端,但是其量测量没有统一时标,更新频率低,而且存在不确定性的传输时延。而同步相量测量单元(phasor measurement unit, PMU)具有高同步、高精度等特点,成为电力系...远程终端单元(remote terminal unit, RTU)是当前电网中最主要的测量终端,但是其量测量没有统一时标,更新频率低,而且存在不确定性的传输时延。而同步相量测量单元(phasor measurement unit, PMU)具有高同步、高精度等特点,成为电力系统中重要的数据采集装置。为协调利用这两种测量数据,首先归纳出RTU量测非同步的来源,分析了量测数据不同步对状态估计和潮流计算的影响,并给出了相关的验证结果。并提出基于能量交互算子的量测数据相关性分析方法。该方法应用同步数据间相关性最大的原理,利用PMU所产生的精确数据来同步RTU数据,为混合测量系统确定测量基准时刻。通过对IEEE39节点电网和广东83节点实际电网的仿真,结果表明该方法能有效校正量测数据非同步以及改善状态估计和潮流计算精度。展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell...Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.展开更多
Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution o...Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.展开更多
This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental ...This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.展开更多
This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By e...This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.展开更多
Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and...Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.展开更多
Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exerc...Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exercise(RE)interventions in older adults with mild cognitive impairment(MCI).Methods This study is a 6-month pilot three-arm randomised controlled trial.Eligible participants(n=108)were recruited and randomised to the AE group,RE group or control(CON)group with a 1:1:1 ratio.Interventions were delivered at home with remote supervision.We evaluated participants’global cognition,memory,executive function,attention,physical activity levels,physical performance and muscle strength of limbs at baseline,3 months(T1)and 6 months(T2)after randomisation.A linear mixed-effects model was adopted for data analyses after controlling for covariates.Tukey’s method was used for adjusting for multiple comparisons.Sensitivity analyses were performed after excluding individuals with low compliance rates.Results 15(13.89%)participants dropped out.The median compliance rates in the AE group and RE group were 67.31%and 93.27%,respectively.After adjusting for covariates,the scores of the Alzheimer’s Disease Assessment Scale-Cognitive subscale in the AE group decreased by 2.04(95%confidence interval(CI)−3.41 to−0.67,t=−2.94,p=0.004)and 1.53(95%CI−2.88 to−0.17,t=−2.22,p=0.028)points more than those in the CON group at T1 and T2,respectively.The effects of AE were still significant at T1(estimate=−1.70,95%CI−3.20 to−0.21,t=−2.69,p=0.021),but lost statistical significance at T2 after adjusting for multiple comparisons.As for executive function,the Stroop time interference in the RE group decreased by 11.76 s(95%CI−21.62 to−1.90,t=−2.81,p=0.015)more than that in the AE group at T2 after Tukey’s adjustment.No other significant effects on cognitive functions were found.Conclusions Both remotely supervised AE and RE programmes are feasible in older adults with MCI.AE has positive effects on global cognition,and RE improves executive function.展开更多
With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,s...With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.展开更多
文摘远程终端单元(remote terminal unit, RTU)是当前电网中最主要的测量终端,但是其量测量没有统一时标,更新频率低,而且存在不确定性的传输时延。而同步相量测量单元(phasor measurement unit, PMU)具有高同步、高精度等特点,成为电力系统中重要的数据采集装置。为协调利用这两种测量数据,首先归纳出RTU量测非同步的来源,分析了量测数据不同步对状态估计和潮流计算的影响,并给出了相关的验证结果。并提出基于能量交互算子的量测数据相关性分析方法。该方法应用同步数据间相关性最大的原理,利用PMU所产生的精确数据来同步RTU数据,为混合测量系统确定测量基准时刻。通过对IEEE39节点电网和广东83节点实际电网的仿真,结果表明该方法能有效校正量测数据非同步以及改善状态估计和潮流计算精度。
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
文摘Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.
文摘Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.
文摘This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.
文摘This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.
文摘Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.
基金funded by the National Natural Science Foundation of China(81871854,72374014)the National Key R&D Program of China(2020YFC2008804)+1 种基金the Shanghai Jiao Tong University Young Talent Cultivation Program in Liberal Arts(2024QN041)the Shanghai Jiao Tong University School of Medicine:Nursing Development Program(SJTUHLXK2024).
文摘Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exercise(RE)interventions in older adults with mild cognitive impairment(MCI).Methods This study is a 6-month pilot three-arm randomised controlled trial.Eligible participants(n=108)were recruited and randomised to the AE group,RE group or control(CON)group with a 1:1:1 ratio.Interventions were delivered at home with remote supervision.We evaluated participants’global cognition,memory,executive function,attention,physical activity levels,physical performance and muscle strength of limbs at baseline,3 months(T1)and 6 months(T2)after randomisation.A linear mixed-effects model was adopted for data analyses after controlling for covariates.Tukey’s method was used for adjusting for multiple comparisons.Sensitivity analyses were performed after excluding individuals with low compliance rates.Results 15(13.89%)participants dropped out.The median compliance rates in the AE group and RE group were 67.31%and 93.27%,respectively.After adjusting for covariates,the scores of the Alzheimer’s Disease Assessment Scale-Cognitive subscale in the AE group decreased by 2.04(95%confidence interval(CI)−3.41 to−0.67,t=−2.94,p=0.004)and 1.53(95%CI−2.88 to−0.17,t=−2.22,p=0.028)points more than those in the CON group at T1 and T2,respectively.The effects of AE were still significant at T1(estimate=−1.70,95%CI−3.20 to−0.21,t=−2.69,p=0.021),but lost statistical significance at T2 after adjusting for multiple comparisons.As for executive function,the Stroop time interference in the RE group decreased by 11.76 s(95%CI−21.62 to−1.90,t=−2.81,p=0.015)more than that in the AE group at T2 after Tukey’s adjustment.No other significant effects on cognitive functions were found.Conclusions Both remotely supervised AE and RE programmes are feasible in older adults with MCI.AE has positive effects on global cognition,and RE improves executive function.
文摘With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.