The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(...The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.展开更多
The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor th...The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor the beam status and to improve the reconstruction resolution of the primary vertex.Custom-designed pixel charge sensors,named TopmetalCEEv1,are employed in the detector to locate the position of each particle.Readout electronics for the beam monitor were designed,including front-end electronics utilizing the Topmetal-CEEv1 sensors,as well as a readout and control unit that communicates with the DAQ,trigger,and clock systems.A series of tests were performed to validate the functionality and performance of the system,including basic electronic verifications and responses toαparticles and heavy-ion beams.The results show that all designed functions of the readout electronics system work well,and this system could be used for beam monitoring in the CEE experiment.展开更多
The high-energy cosmic radiation detector(HERD)is a planned experimental instrument at the Chinese Space Station.The silicon charge detector(SCD),a subdetector in HERD,is used to detect cosmic-ray nuclei with a high c...The high-energy cosmic radiation detector(HERD)is a planned experimental instrument at the Chinese Space Station.The silicon charge detector(SCD),a subdetector in HERD,is used to detect cosmic-ray nuclei with a high charge resolution.In this study,we present a compact readout electronic system for the SCD that is designed for the HERD heavy-ion beam test.It comprises front-end readout electronics with 200 input channels as well as data acquisition and data management electronics.The test results showed that the SCD readout system had low noise with a silicon-strip detector connected.The dynamic range could be extended from 200 to 1200 fC,and the cosmic-ray test was performed as expected.展开更多
The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and a...The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and an observatory for high-energy gamma rays.A transition radiation detector placed on one of its lateral sides serves dual purpose,(ⅰ)calibrating HERD's electromagnetic calorimeter in the TeV energy range,and(ⅱ)serving as an independent detector for high-energy gamma rays.In this paper,the prototype readout electronics design of the transition radiation detector is demonstrated,which aims to accurately measure the charge of the anodes using the SAMPA application specific integrated circuit chip.The electronic performance of the prototype system is evaluated in terms of noise,linearity,and resolution.Through the presented design,each electronic channel can achieve a dynamic range of 0–100 fC,the RMS noise level not exceeding 0.15 fC,and the integral nonlinearity was<0.2%.To further verify the readout electronic performance,a joint test with the detector was carried out,and the results show that the prototype system can satisfy the requirements of the detector's scientific goals.展开更多
The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are dist...The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.展开更多
The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout pr...The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as ...Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as feedback components to reduce noise. Compared with conventional CSA, the input referred equivalent noise charge(ENC) is simulated to be reduced from 5036e to 2381e with a large detector capacitance of 150pF at the cost of 0.5V output swing loss. The CR-(RC),semi-Gaussian shaper uses MOS transistors in the triode region in series with poly-resistors to compensate process variation without much linearity reduction.展开更多
Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is ...Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is proposed. The system mainly consists of three functional modules, including active quenching circuit( AQC), time-to-digital converter( TDC) circuit and other timing controller circuit. Each AQC and TDC circuit together constitutes the pixel circuit. Under the cooperation with other modules, the current signal generated by the GM-APD sensor is detected by the AQC, and the photon time-of-flight( TOF) is measured and converted to a digital signal output to achieve a better noise suppression and a higher detection sensitivity by the TDC. The ROIC circuit is fabricated by the CSMC 0. 5 μm standard CMOS technology. The array size is 8 × 8, and the center distance of two adjacent cells is 100μm. The measurement results of the chip showthat the performance of the circuit is good, and the chip can achieve 1 ns time resolution with a 250 MHz reference clock, and the circuit can be used in the array structure of the infrared detection system or focal plane array( FPA).展开更多
“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the...“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the universe.Also,they are being increasingly used in other disciplines like nuclear power generation,life sciences,environmental sciences,medical sciences,etc.The article reviews the short history,recent development,and trend of nuclear detection and readout techniques,covering Semiconductor Detector,Gaseous Detector,Scintillation Detector,Cherenkov Detector,Transition Radiation Detector,and Readout Techniques.By explaining the principle and using examples,we hope to help the interested reader underst and this research field and bring exciting information to the community.展开更多
The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly co...The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.展开更多
Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By...Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.展开更多
A gas detector 140×140×140 mm^(3)in size,termed the compact active target time projection chamber(CAT-TPC),was developed in this study to measure resonant scattering associated with cluster structures in uns...A gas detector 140×140×140 mm^(3)in size,termed the compact active target time projection chamber(CAT-TPC),was developed in this study to measure resonant scattering associated with cluster structures in unstable nuclei.The CAT-TPC consists of an electronic field cage,double-thick gas-electron-multiplier foils,a general-purpose digital data acquisition system,and a newly developed two-dimensional strip-readout structure.The CAT-TPC was operated using a^(4)He(96%)+CO_(2)(4%)gas mixture at 400 mbar.The working gas also serves as an active target for tracking charged particles.The overall performance of the CAT-TPC was evaluated using a collimated a-particle source.A time resolution of less than 20 ns and a position resolution of less than 0.2 mm were observed along the electron drift direction.Threedimensional images of incident trajectories and scattering events can be clearly reconstructed under an angular resolution of approximately 0.45 degree.展开更多
In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-ene...In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-energy imaging calorimeter(HEIC) is currently being developed as a homogeneous calorimeter that utilizes long bismuth germanate(BGO) scintillation crystals as both absorbers and detectors. To accurately measure the energy deposition in the BGO bar of HEIC, a highdynamic-range readout method using a silicon photomultiplier(SiPM) and multiphotodiode(PD) with different active areas has been proposed. A prototype readout system that adopts multichannel charge measurement ASICs was also developed to read out the combined system of SiPMs and PDs. Preliminary tests confirmed the feasibility of the readout scheme, which is expected to have a dynamic range close to 10~6.展开更多
China plans to develop the next generation dark matter particle explorer satellite,referred to as the Very Large Area Space Telescope(VLAST).As an essential step in this process,the prototype design of detectors and e...China plans to develop the next generation dark matter particle explorer satellite,referred to as the Very Large Area Space Telescope(VLAST).As an essential step in this process,the prototype design of detectors and electronics for the VLAST is currently underway.The nuclide detector is a core detector in the VLAST.It mainly measures nuclides’charges and distinguishes high-energy gamma rays and electrons.This paper will discuss the prototype readout electronics for the VLAST’s nuclide detector,which accurately measures the charge signal of the photomultiplier tubes using the VATA160 applicationspecific integrated circuit chip;furthermore,we consider a series of critical problems,including radiation-hardening and environment monitoring.The test results show that the system exhibits stable operation,good performance,and good technical indicators.Furthermore,each electronic channel achieves a dynamic range of 0-12.5 pC,the random noise level exceeds 1.6 fC,and the integral nonlinearity exceeds 0.35%.展开更多
The diode infrared focal plane array uses the silicon diodes as a sensitive device for infrared signal measurement. By the infrared radiation, the infrared focal plane can produces small voltage signals. For the tradi...The diode infrared focal plane array uses the silicon diodes as a sensitive device for infrared signal measurement. By the infrared radiation, the infrared focal plane can produces small voltage signals. For the traditional readout circuit structures are designed to process current signals, they cannot be applied to it. In this paper, a new readout circuit for the diode un-cooled infrared focal plane array is developed. The principle of detector array signal readout and small signal amplification is given in detail. The readout circuit is designed and simulated by using the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm complementary metal-oxide-semiconductor transistor (CMOS) technology library. Cadence Spectre simulation results show that the scheme can be applied to the CMOS readout integrated circuit (ROIC) with a larger array, such as 320×240 size array.展开更多
HFRS(HIAF FRagment Separator) will be the radioactive secondary beam separation line on High-Intensity heavy-ion Accelerator Facility(HIAF) in China. Several TPC detectors, with high count rates, are planned for parti...HFRS(HIAF FRagment Separator) will be the radioactive secondary beam separation line on High-Intensity heavy-ion Accelerator Facility(HIAF) in China. Several TPC detectors, with high count rates, are planned for particle identification and beam monitoring at HFRS. This paper presents an event-driven internal memory and synchronous readout(EDIMS)prototype ASIC chip. The aim is to provide HFRS-TPC with high-precision time and charge measurements with high count rates and a large dynamic range. The first prototype EDIMS chip integrated 16 channels and is fabricated using a 0.18-μm CMOS process. Each channel consists of a charge-sensitive amplifier, fast shaper, slow shaper, peak detect-and-hold circuit, discriminator with time-walk compensation, analog memory, and FIFO. The token ring is used for clock-synchronous readout. The chip is taped and tested.展开更多
The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID det...The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.展开更多
With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware ...With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware deployment platforms,Field Programmable Gate Array(FPGA)has the advantages of being programmable,low power consumption,parallelism,and low cost.However,the enormous amount of calculation of DCNN and the limited logic capacity of FPGA restrict the energy efficiency of the DCNN accelerator.The traditional sequential sliding window method can improve the throughput of the DCNN accelerator by data multiplexing,but this method’s data multiplexing rate is low because it repeatedly reads the data between rows.This paper proposes a fast data readout strategy via the circular sliding window data reading method,it can improve the multiplexing rate of data between rows by optimizing the memory access order of input data.In addition,the multiplication bit width of the DCNN accelerator is much smaller than that of the Digital Signal Processing(DSP)on the FPGA,which means that there will be a waste of resources if a multiplication uses a single DSP.A multiplier sharing strategy is proposed,the multiplier of the accelerator is customized so that a single DSP block can complete multiple groups of 4,6,and 8-bit signed multiplication in parallel.Finally,based on two strategies of appeal,an FPGA optimized accelerator is proposed.The accelerator is customized by Verilog language and deployed on Xilinx VCU118.When the accelerator recognizes the CIRFAR-10 dataset,its energy efficiency is 39.98 GOPS/W,which provides 1.73×speedup energy efficiency over previous DCNN FPGA accelerators.When the accelerator recognizes the IMAGENET dataset,its energy efficiency is 41.12 GOPS/W,which shows 1.28×−3.14×energy efficiency compared with others.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 12222512, 12375193, U2031206, U1831206, and U2032209)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (GJJSTD20210009)+1 种基金the CAS Pioneer Hundred Talent Programthe CAS Light of West China Program
文摘The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.
基金supported by the National Natural Science Foundation of China(Nos.11927901,12105110,U2032209,12275105)the National Key Research and Development Program of China(Nos.2020YFE0202002,2022YFA1602103)the Fundamental Research Funds for the Central Universities(No.CCNU22QN005)。
文摘The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor the beam status and to improve the reconstruction resolution of the primary vertex.Custom-designed pixel charge sensors,named TopmetalCEEv1,are employed in the detector to locate the position of each particle.Readout electronics for the beam monitor were designed,including front-end electronics utilizing the Topmetal-CEEv1 sensors,as well as a readout and control unit that communicates with the DAQ,trigger,and clock systems.A series of tests were performed to validate the functionality and performance of the system,including basic electronic verifications and responses toαparticles and heavy-ion beams.The results show that all designed functions of the readout electronics system work well,and this system could be used for beam monitoring in the CEE experiment.
基金supported by the CNSA program(D050102)National Natural Science Foundation of China(Nos.12061131007,12003038,42365006)Young Scientists Fund of the National Natural Science Foundation of China(No.11903037).
文摘The high-energy cosmic radiation detector(HERD)is a planned experimental instrument at the Chinese Space Station.The silicon charge detector(SCD),a subdetector in HERD,is used to detect cosmic-ray nuclei with a high charge resolution.In this study,we present a compact readout electronic system for the SCD that is designed for the HERD heavy-ion beam test.It comprises front-end readout electronics with 200 input channels as well as data acquisition and data management electronics.The test results showed that the SCD readout system had low noise with a silicon-strip detector connected.The dynamic range could be extended from 200 to 1200 fC,and the cosmic-ray test was performed as expected.
基金supported by the National Natural Science Foundation of China(Nos.12375193,11975292,11875304)the CAS“Light of West China”Program+1 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210009)the CAS Pioneer Hundred Talent Program。
文摘The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and an observatory for high-energy gamma rays.A transition radiation detector placed on one of its lateral sides serves dual purpose,(ⅰ)calibrating HERD's electromagnetic calorimeter in the TeV energy range,and(ⅱ)serving as an independent detector for high-energy gamma rays.In this paper,the prototype readout electronics design of the transition radiation detector is demonstrated,which aims to accurately measure the charge of the anodes using the SAMPA application specific integrated circuit chip.The electronic performance of the prototype system is evaluated in terms of noise,linearity,and resolution.Through the presented design,each electronic channel can achieve a dynamic range of 0–100 fC,the RMS noise level not exceeding 0.15 fC,and the integral nonlinearity was<0.2%.To further verify the readout electronic performance,a joint test with the detector was carried out,and the results show that the prototype system can satisfy the requirements of the detector's scientific goals.
基金partially supported by the Strategic Priority Research Program of Chinese Academy of Science(No.XDB 34030000)the National Natural Science Foundation of China(Nos.11975293 and 12205348)。
文摘The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074368,92165207,12034018,and 62004185)the Anhui Province Natural Science Foundation (Grant No.2108085J03)the USTC Tang Scholarship。
文摘The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
文摘Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as feedback components to reduce noise. Compared with conventional CSA, the input referred equivalent noise charge(ENC) is simulated to be reduced from 5036e to 2381e with a large detector capacitance of 150pF at the cost of 0.5V output swing loss. The CR-(RC),semi-Gaussian shaper uses MOS transistors in the triode region in series with poly-resistors to compensate process variation without much linearity reduction.
基金The Natural Science Foundation of Jiangsu Province(No.BK2012559)Qing Lan Project of Jiangsu Province
文摘Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is proposed. The system mainly consists of three functional modules, including active quenching circuit( AQC), time-to-digital converter( TDC) circuit and other timing controller circuit. Each AQC and TDC circuit together constitutes the pixel circuit. Under the cooperation with other modules, the current signal generated by the GM-APD sensor is detected by the AQC, and the photon time-of-flight( TOF) is measured and converted to a digital signal output to achieve a better noise suppression and a higher detection sensitivity by the TDC. The ROIC circuit is fabricated by the CSMC 0. 5 μm standard CMOS technology. The array size is 8 × 8, and the center distance of two adjacent cells is 100μm. The measurement results of the chip showthat the performance of the circuit is good, and the chip can achieve 1 ns time resolution with a 250 MHz reference clock, and the circuit can be used in the array structure of the infrared detection system or focal plane array( FPA).
基金supported by the National Natural Science Foundation of China(No.12222512,U2032209,12075045,12335011,1875097,11975257,62074146,11975115,12205374,12305210,11975292,12005276,12005278,12375193,12227805,12235012,12375191,12005279)the National Key Research and Development Program of China(2021YFA1601300)+13 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34000000)the CAS Pioneer Hundred Talent Programthe CAS“Light of West China”Programthe Natural Science Foundation of Liaoning Province(No.101300261)the Dalian Science and Technology Innovation Fund(2023JJ12GX013)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(Research and development of three-dimensional prospecting technology based on Cosmic-ray muons)(YDZX20216200001297)the Science and Technology Planning Project of Gansu(20JR10RA645)the Lanzhou University Talent Cooperation Research Funds sponsored by both Lanzhou City(561121203)the Gansu provincial science and technology plan projects for talents(054000029)the Beijing Natural Science Foundation(No.1232033)the Beijing Hope Run Special Fund of Cancer Foundation of China(No.LC2021B23)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210009)the Youth Innovation Promotion Association CAS(2021450)。
文摘“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the universe.Also,they are being increasingly used in other disciplines like nuclear power generation,life sciences,environmental sciences,medical sciences,etc.The article reviews the short history,recent development,and trend of nuclear detection and readout techniques,covering Semiconductor Detector,Gaseous Detector,Scintillation Detector,Cherenkov Detector,Transition Radiation Detector,and Readout Techniques.By explaining the principle and using examples,we hope to help the interested reader underst and this research field and bring exciting information to the community.
基金supported by the National Natural Science Foundation of China(Grant No.11205154)
文摘The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of the National Natural Science Foundation of China(No.41327802)China Mars Project
文摘Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.
基金supported by the National Key R&D Program of China(No.2018YFA0404403)the National Natural Science Foundation of China(Nos.U1967201,11875074,11875073,and 11961141003)the State Key Laboratory of Nuclear Physics and Technology,PKU(No.NPT2020KFY06)。
文摘A gas detector 140×140×140 mm^(3)in size,termed the compact active target time projection chamber(CAT-TPC),was developed in this study to measure resonant scattering associated with cluster structures in unstable nuclei.The CAT-TPC consists of an electronic field cage,double-thick gas-electron-multiplier foils,a general-purpose digital data acquisition system,and a newly developed two-dimensional strip-readout structure.The CAT-TPC was operated using a^(4)He(96%)+CO_(2)(4%)gas mixture at 400 mbar.The working gas also serves as an active target for tracking charged particles.The overall performance of the CAT-TPC was evaluated using a collimated a-particle source.A time resolution of less than 20 ns and a position resolution of less than 0.2 mm were observed along the electron drift direction.Threedimensional images of incident trajectories and scattering events can be clearly reconstructed under an angular resolution of approximately 0.45 degree.
基金Foundation of China (Nos. 12227805, U1831206, 12103095, 12235012, 12273120, and 11973097)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. GJJSTD20210009)。
文摘In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-energy imaging calorimeter(HEIC) is currently being developed as a homogeneous calorimeter that utilizes long bismuth germanate(BGO) scintillation crystals as both absorbers and detectors. To accurately measure the energy deposition in the BGO bar of HEIC, a highdynamic-range readout method using a silicon photomultiplier(SiPM) and multiphotodiode(PD) with different active areas has been proposed. A prototype readout system that adopts multichannel charge measurement ASICs was also developed to read out the combined system of SiPMs and PDs. Preliminary tests confirmed the feasibility of the readout scheme, which is expected to have a dynamic range close to 10~6.
基金supported by the National Natural Science Foundation of China(Nos.U2031206,U1831206,11975292,11875304)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210009)+1 种基金the CAS“Light of West China”Programthe CAS Pioneer Hundred Talent Program。
文摘China plans to develop the next generation dark matter particle explorer satellite,referred to as the Very Large Area Space Telescope(VLAST).As an essential step in this process,the prototype design of detectors and electronics for the VLAST is currently underway.The nuclide detector is a core detector in the VLAST.It mainly measures nuclides’charges and distinguishes high-energy gamma rays and electrons.This paper will discuss the prototype readout electronics for the VLAST’s nuclide detector,which accurately measures the charge signal of the photomultiplier tubes using the VATA160 applicationspecific integrated circuit chip;furthermore,we consider a series of critical problems,including radiation-hardening and environment monitoring.The test results show that the system exhibits stable operation,good performance,and good technical indicators.Furthermore,each electronic channel achieves a dynamic range of 0-12.5 pC,the random noise level exceeds 1.6 fC,and the integral nonlinearity exceeds 0.35%.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No. 2009JBM001
文摘The diode infrared focal plane array uses the silicon diodes as a sensitive device for infrared signal measurement. By the infrared radiation, the infrared focal plane can produces small voltage signals. For the traditional readout circuit structures are designed to process current signals, they cannot be applied to it. In this paper, a new readout circuit for the diode un-cooled infrared focal plane array is developed. The principle of detector array signal readout and small signal amplification is given in detail. The readout circuit is designed and simulated by using the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm complementary metal-oxide-semiconductor transistor (CMOS) technology library. Cadence Spectre simulation results show that the scheme can be applied to the CMOS readout integrated circuit (ROIC) with a larger array, such as 320×240 size array.
基金supported by the National Natural Science Foundation of China (Nos. 11975293 and 12105338)the Strategic Priority Research Program of Chinese Academy of Science (Nos. XDB 34040200 and XPB 23)the Technology Innovation Project of Instrument and Equipment Function Development of Chinese Academy of Sciences (No. 2023g102)。
文摘HFRS(HIAF FRagment Separator) will be the radioactive secondary beam separation line on High-Intensity heavy-ion Accelerator Facility(HIAF) in China. Several TPC detectors, with high count rates, are planned for particle identification and beam monitoring at HFRS. This paper presents an event-driven internal memory and synchronous readout(EDIMS)prototype ASIC chip. The aim is to provide HFRS-TPC with high-precision time and charge measurements with high count rates and a large dynamic range. The first prototype EDIMS chip integrated 16 channels and is fabricated using a 0.18-μm CMOS process. Each channel consists of a charge-sensitive amplifier, fast shaper, slow shaper, peak detect-and-hold circuit, discriminator with time-walk compensation, analog memory, and FIFO. The token ring is used for clock-synchronous readout. The chip is taped and tested.
基金supported by the international partnership program of the Chinese Academy of Sciences under Grant No.211134KYSB20200057Double First-Class university project foundation of USTC+1 种基金Youth Innovation Promotion Association CASCAS Center for Excellence in Particle Physics(CCEPP)。
文摘The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.
基金supported in part by the Major Program of the Ministry of Science and Technology of China under Grant 2019YFB2205102in part by the National Natural Science Foundation of China under Grant 61974164,62074166,61804181,62004219,62004220,62104256.
文摘With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware deployment platforms,Field Programmable Gate Array(FPGA)has the advantages of being programmable,low power consumption,parallelism,and low cost.However,the enormous amount of calculation of DCNN and the limited logic capacity of FPGA restrict the energy efficiency of the DCNN accelerator.The traditional sequential sliding window method can improve the throughput of the DCNN accelerator by data multiplexing,but this method’s data multiplexing rate is low because it repeatedly reads the data between rows.This paper proposes a fast data readout strategy via the circular sliding window data reading method,it can improve the multiplexing rate of data between rows by optimizing the memory access order of input data.In addition,the multiplication bit width of the DCNN accelerator is much smaller than that of the Digital Signal Processing(DSP)on the FPGA,which means that there will be a waste of resources if a multiplication uses a single DSP.A multiplier sharing strategy is proposed,the multiplier of the accelerator is customized so that a single DSP block can complete multiple groups of 4,6,and 8-bit signed multiplication in parallel.Finally,based on two strategies of appeal,an FPGA optimized accelerator is proposed.The accelerator is customized by Verilog language and deployed on Xilinx VCU118.When the accelerator recognizes the CIRFAR-10 dataset,its energy efficiency is 39.98 GOPS/W,which provides 1.73×speedup energy efficiency over previous DCNN FPGA accelerators.When the accelerator recognizes the IMAGENET dataset,its energy efficiency is 41.12 GOPS/W,which shows 1.28×−3.14×energy efficiency compared with others.