为寻求一种较好的Pt-Co/C纳米合金催化剂合成方法,运用浸渍还原法制备两种Pt-Co/C催化剂,运用循环伏安和线性扫描的方法测试它们在H_(2)SO_(4)溶液中有无CH3OH时,对O_(2)的电催化还原情况及抗甲醇性能,同时与商用Pt/C催化剂进行还原性...为寻求一种较好的Pt-Co/C纳米合金催化剂合成方法,运用浸渍还原法制备两种Pt-Co/C催化剂,运用循环伏安和线性扫描的方法测试它们在H_(2)SO_(4)溶液中有无CH3OH时,对O_(2)的电催化还原情况及抗甲醇性能,同时与商用Pt/C催化剂进行还原性能比较。结果表明:与商用Pt/C催化剂电极相比,Pt-Co/C(1)催化剂电极对O_(2)的电催化还原效果较好。80℃时制备的Pt∶Co=3∶1的Pt-Co/C催化剂电极对O_(2)的电催化还原效果最佳。扫描电子显微镜(Scanning Electron Microscope,SEM)和透射电子显微镜(Transmission Electron Microscope,TEM)观察表明,Pt-Co/C(1)催化剂粒径小且分散均匀。采用浸渍还原法,以硼氢化钠为还原剂制得的Pt-Co/C(1)催化剂对O2的电催化还原性能较好,同时具有较好的抗甲醇氧化能力。展开更多
以加氢制备3,4-二氯苯胺为探针反应,考察Pt-Cu-V/C用于加氢制备卤代芳胺的选择性和活性。得到较佳的工艺条件:100 m L乙醇,50 g 3,4-二氯硝基苯,0.02 g催化剂(占硝基物质量的0.04%),反应温度75℃,反应压力1.0 MPa。实验结果表明:反应无...以加氢制备3,4-二氯苯胺为探针反应,考察Pt-Cu-V/C用于加氢制备卤代芳胺的选择性和活性。得到较佳的工艺条件:100 m L乙醇,50 g 3,4-二氯硝基苯,0.02 g催化剂(占硝基物质量的0.04%),反应温度75℃,反应压力1.0 MPa。实验结果表明:反应无脱氯副反应发生,产物含量达到99.9%;催化剂不补加,可连续套用2次。展开更多
A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting ...A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.展开更多
High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as...High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as the loading increases,the agglomeration and growth of Pt nanoparticles(NPs)occur,causing unsatisfactory performance.Here,we present an efficient method for preparing of highly dispersed and small-sized Pt/C catalysts with Pt loadings varying from 39.01 wt%to 66.48 wt%through the high-temperature shock technique.The high density and ultrafine(~2.5 nm)Pt NPs are successfully anchored onto Vulcan XC-72R carbon black without the use of additional capping agents or surfactants.The modified carbon supports enhance the affinity for Pt precursors,contributing to loading efficiencies of 95%or more,while also providing abundant sites for the nucleation and fixation of Pt NPs,thus preventing agglomeration.In the context of the hydrogen evolution reaction in acidic media,the as-synthesized high-loading Pt/C catalysts show remarkable activity and stability,outperforming the state-of-the-art commercial Pt/C.This is mainly because the combined effects of ultrasmall and uniform Pt NPs,optimized electronic structure of Pt site,superhydrophilicity and effective anchoring of Pt NPs.The polymer electrolyte membrane electrolyzer integrated with Pt60/OX72R and commercial IrO2 reaches 1 A cm^(-2)at 1.77 V and operates stably for 120 hours with a negligible voltage decay.This new strategy is fast,scalable and cost-effective for large-scale production of metal-supported catalysts,especially for the high-loading ones.展开更多
The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_...The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_(x)-based catalysts exhibited exceptional capabilities for C_(Ar)–C bond cleavage and broken the limitation of lignin monomers.In this work,we presented an economical multifunctional Pt-Nb/MOR catalyst that achieved an impressive monomer yield of 147%during the depolymerization and hydrodeoxygenation of lignin into mono-cycloalkanes.Reaction pathway studies showed that unlike traditional NbO_(x)-based catalytic system,bicyclohexane was an important intermediate in this system and followed the C_(sp3)–C_(sp3)cleavage pathway after complete cyclic-hydrogenation.Deep investigations demonstrated that the doping of Nb in Pt/MOR not only enhanced the activation of hydrogen by Pt,but also increased the acidity of MOR,both of these are favor for the hydrogenolytic cleavage of C_(sp3)–C_(sp3)bonds.This work provides a low-cost catalyst to obtain high-yield monomers from lignin under relatively mild conditions and would help to design catalysts with higher activity for the valorization of lignin.展开更多
文摘为寻求一种较好的Pt-Co/C纳米合金催化剂合成方法,运用浸渍还原法制备两种Pt-Co/C催化剂,运用循环伏安和线性扫描的方法测试它们在H_(2)SO_(4)溶液中有无CH3OH时,对O_(2)的电催化还原情况及抗甲醇性能,同时与商用Pt/C催化剂进行还原性能比较。结果表明:与商用Pt/C催化剂电极相比,Pt-Co/C(1)催化剂电极对O_(2)的电催化还原效果较好。80℃时制备的Pt∶Co=3∶1的Pt-Co/C催化剂电极对O_(2)的电催化还原效果最佳。扫描电子显微镜(Scanning Electron Microscope,SEM)和透射电子显微镜(Transmission Electron Microscope,TEM)观察表明,Pt-Co/C(1)催化剂粒径小且分散均匀。采用浸渍还原法,以硼氢化钠为还原剂制得的Pt-Co/C(1)催化剂对O2的电催化还原性能较好,同时具有较好的抗甲醇氧化能力。
文摘以加氢制备3,4-二氯苯胺为探针反应,考察Pt-Cu-V/C用于加氢制备卤代芳胺的选择性和活性。得到较佳的工艺条件:100 m L乙醇,50 g 3,4-二氯硝基苯,0.02 g催化剂(占硝基物质量的0.04%),反应温度75℃,反应压力1.0 MPa。实验结果表明:反应无脱氯副反应发生,产物含量达到99.9%;催化剂不补加,可连续套用2次。
文摘A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.
文摘High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as the loading increases,the agglomeration and growth of Pt nanoparticles(NPs)occur,causing unsatisfactory performance.Here,we present an efficient method for preparing of highly dispersed and small-sized Pt/C catalysts with Pt loadings varying from 39.01 wt%to 66.48 wt%through the high-temperature shock technique.The high density and ultrafine(~2.5 nm)Pt NPs are successfully anchored onto Vulcan XC-72R carbon black without the use of additional capping agents or surfactants.The modified carbon supports enhance the affinity for Pt precursors,contributing to loading efficiencies of 95%or more,while also providing abundant sites for the nucleation and fixation of Pt NPs,thus preventing agglomeration.In the context of the hydrogen evolution reaction in acidic media,the as-synthesized high-loading Pt/C catalysts show remarkable activity and stability,outperforming the state-of-the-art commercial Pt/C.This is mainly because the combined effects of ultrasmall and uniform Pt NPs,optimized electronic structure of Pt site,superhydrophilicity and effective anchoring of Pt NPs.The polymer electrolyte membrane electrolyzer integrated with Pt60/OX72R and commercial IrO2 reaches 1 A cm^(-2)at 1.77 V and operates stably for 120 hours with a negligible voltage decay.This new strategy is fast,scalable and cost-effective for large-scale production of metal-supported catalysts,especially for the high-loading ones.
文摘The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_(x)-based catalysts exhibited exceptional capabilities for C_(Ar)–C bond cleavage and broken the limitation of lignin monomers.In this work,we presented an economical multifunctional Pt-Nb/MOR catalyst that achieved an impressive monomer yield of 147%during the depolymerization and hydrodeoxygenation of lignin into mono-cycloalkanes.Reaction pathway studies showed that unlike traditional NbO_(x)-based catalytic system,bicyclohexane was an important intermediate in this system and followed the C_(sp3)–C_(sp3)cleavage pathway after complete cyclic-hydrogenation.Deep investigations demonstrated that the doping of Nb in Pt/MOR not only enhanced the activation of hydrogen by Pt,but also increased the acidity of MOR,both of these are favor for the hydrogenolytic cleavage of C_(sp3)–C_(sp3)bonds.This work provides a low-cost catalyst to obtain high-yield monomers from lignin under relatively mild conditions and would help to design catalysts with higher activity for the valorization of lignin.