Purpose of the Study: COVID-19 is caused by the SARS-CoV-2 virus that had a global pandemic spread in the last two years. Symptoms of the disease include respiratory distress and, in severe cases may consequently lead...Purpose of the Study: COVID-19 is caused by the SARS-CoV-2 virus that had a global pandemic spread in the last two years. Symptoms of the disease include respiratory distress and, in severe cases may consequently lead to death. Blocking the viral proteins can aid in treating this disease and alleviating its symptoms. Two target proteins of the coronavirus that are hot spots in drug discovery are the papain-like protease PL-pro and the main protease M-pro. PL-pro is an enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread. M-pro is the major protease of SARS-CoV-2, which is a keystone in viral replication and transcription. Methods: In this study, we shed the light on the route of targeting viral proteins for disease alleviation, by targeting the two aforementioned enzymes, PL-pro and M-pro using in silico studies. Docking experiments, using AutoDock algorithms, were performed to predict the inhibitory effect of recently produced synthetic derivatives of curcumin on the viral proteins. Results: Most of the curcumin derivatives have shown variable levels of inhibition, e.g., S1 - S6, mainly on the papain-like protease, and to a lesser extent on the main protease. Conclusion: The results indicated that curcumin derivatives can be potent anti-viral drug of SARS-CoV-2, namely targeting the papain-like protease.展开更多
To explore the impact of different concentrations of lanthanum chloride (LaC13) on critical components of wear particle-mediated signaling pathways in inflammation and osteoclastogenesis, RAW264.7 cells were natural...To explore the impact of different concentrations of lanthanum chloride (LaC13) on critical components of wear particle-mediated signaling pathways in inflammation and osteoclastogenesis, RAW264.7 cells were naturally divided into eight groups and analyzed by CCK-8 assay, flow cytometry, ELISA, RT-PCR and western blot after treatments. The results showed that three concentrations of LaCI3 had no influence on viability of RAW264.7 cells and down-regulated receptor activator of nuclear factor rd3 (RANK) instead of macrophage colony-stimulating factor receptor (M-CSFR). Additionally, 2.5 and 10 pmol/L LaC13 could signifi- cantly inhibit gene and protein levels of pro-inflammatory cytokines (tumor necrosis factor-or and interleukin-113, i.e., TNF-ct and IL-113) and NF-r,B/p65, but 100 pmol/L LaC13 did not exert an obvious inflammation-inhibiting effect, and even induced inflamma- tion. In conclusion, these findings demonstrated that LaC13 was able to suppress wear particle-induced inflammation and activation of NF-rd3 in a certain range of concentrations in vitro and mainly decrease the expression of RANK, but not M-CSFR, all of which were generally recognized to play a pivotal role in osteoclastogenesis.展开更多
Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dyn...Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dynamics to analyze if potential inhibitors of main protease (M<sup>pro</sup>) of SARS-CoV-2 can interfere in the attachment of nanobodies, specifically Nb20, in the receptor binding domain (RBD) of SARS-CoV-2. The potential inhibitors are four compounds previously identified in a fluorescence resonance energy transfer (FRET)-based enzymatic assay for the SARS-CoV-2 M<sup>pro</sup>: Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376. The findings reveal that Boceprevir has the higher affinity with the RBD/Nb20 complex, followed by Calpain Inhibitor XII, GC376 and Calpain Inhibitor II. The recovery time indicates that the RBD/Nb20 complex needs a relatively short time to return to what it was before the presence of the ligands. For the RMSD the Boceprevir and Calpain Inhibitor II have the shortest interaction times, while Calpain Inhibitor XII shows slightly more interaction, but with significant pose fluctuations. On the other hand, GC376 remains stably bound for a longer duration compared to the other compounds, suggesting that they can potentially interfere with the neutralization process of Nb20.展开更多
文摘Purpose of the Study: COVID-19 is caused by the SARS-CoV-2 virus that had a global pandemic spread in the last two years. Symptoms of the disease include respiratory distress and, in severe cases may consequently lead to death. Blocking the viral proteins can aid in treating this disease and alleviating its symptoms. Two target proteins of the coronavirus that are hot spots in drug discovery are the papain-like protease PL-pro and the main protease M-pro. PL-pro is an enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread. M-pro is the major protease of SARS-CoV-2, which is a keystone in viral replication and transcription. Methods: In this study, we shed the light on the route of targeting viral proteins for disease alleviation, by targeting the two aforementioned enzymes, PL-pro and M-pro using in silico studies. Docking experiments, using AutoDock algorithms, were performed to predict the inhibitory effect of recently produced synthetic derivatives of curcumin on the viral proteins. Results: Most of the curcumin derivatives have shown variable levels of inhibition, e.g., S1 - S6, mainly on the papain-like protease, and to a lesser extent on the main protease. Conclusion: The results indicated that curcumin derivatives can be potent anti-viral drug of SARS-CoV-2, namely targeting the papain-like protease.
基金supported by National Natural Science Foundation of China(81160222)the Foundation of Health Department of Jiangxi Province(20121044)
文摘To explore the impact of different concentrations of lanthanum chloride (LaC13) on critical components of wear particle-mediated signaling pathways in inflammation and osteoclastogenesis, RAW264.7 cells were naturally divided into eight groups and analyzed by CCK-8 assay, flow cytometry, ELISA, RT-PCR and western blot after treatments. The results showed that three concentrations of LaCI3 had no influence on viability of RAW264.7 cells and down-regulated receptor activator of nuclear factor rd3 (RANK) instead of macrophage colony-stimulating factor receptor (M-CSFR). Additionally, 2.5 and 10 pmol/L LaC13 could signifi- cantly inhibit gene and protein levels of pro-inflammatory cytokines (tumor necrosis factor-or and interleukin-113, i.e., TNF-ct and IL-113) and NF-r,B/p65, but 100 pmol/L LaC13 did not exert an obvious inflammation-inhibiting effect, and even induced inflamma- tion. In conclusion, these findings demonstrated that LaC13 was able to suppress wear particle-induced inflammation and activation of NF-rd3 in a certain range of concentrations in vitro and mainly decrease the expression of RANK, but not M-CSFR, all of which were generally recognized to play a pivotal role in osteoclastogenesis.
文摘Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dynamics to analyze if potential inhibitors of main protease (M<sup>pro</sup>) of SARS-CoV-2 can interfere in the attachment of nanobodies, specifically Nb20, in the receptor binding domain (RBD) of SARS-CoV-2. The potential inhibitors are four compounds previously identified in a fluorescence resonance energy transfer (FRET)-based enzymatic assay for the SARS-CoV-2 M<sup>pro</sup>: Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376. The findings reveal that Boceprevir has the higher affinity with the RBD/Nb20 complex, followed by Calpain Inhibitor XII, GC376 and Calpain Inhibitor II. The recovery time indicates that the RBD/Nb20 complex needs a relatively short time to return to what it was before the presence of the ligands. For the RMSD the Boceprevir and Calpain Inhibitor II have the shortest interaction times, while Calpain Inhibitor XII shows slightly more interaction, but with significant pose fluctuations. On the other hand, GC376 remains stably bound for a longer duration compared to the other compounds, suggesting that they can potentially interfere with the neutralization process of Nb20.