期刊文献+
共找到35,148篇文章
< 1 2 250 >
每页显示 20 50 100
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
1
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
2
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Advances in polymer-based hydrogel systems for adipose-derived mesenchymal stem cells toward bone regeneration
3
作者 Nivetha Suresh Sundaravadhanan Lekhavadhani Nagarajan Selvamurugan 《World Journal of Orthopedics》 2026年第1期13-28,共16页
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i... Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived mesenchymal stem cells Bone tissue engineering HYDROGELS Bone regeneration polymerS
在线阅读 下载PDF
Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers
4
作者 Xu Li Yue Zhao Tingli Ma 《Chinese Journal of Structural Chemistry》 2025年第2期1-2,共2页
High-performance lithium metal batteries benefit from the construction of composite polymer electrolytes(CPEs)which are synthesized by incorporating inorganic fillers into polymer matrices[1].However,the random distri... High-performance lithium metal batteries benefit from the construction of composite polymer electrolytes(CPEs)which are synthesized by incorporating inorganic fillers into polymer matrices[1].However,the random distribution of added fillers within the polymer matrix can lead to tortuous ion pathways and longer transmission distances(Fig.1).As a result,the ion transport capability of CPEs may decrease,while interface contact may deteriorate.Therefore,the organized arrangement of fillers emerges as a crucial consideration in constructing electrolyte membranes.One highly effective approach is the adoption of a vertically aligned filler configuration,where ceramic fillers are constructed to be perpendicular to the electrolyte membrane.If so,the filler/electrolyte interface impedance can be significantly reduced,while continuous ion transport channels along the specified direction are formed,thus significantly enhancing the ion conduction(Fig.1(a))[1]. 展开更多
关键词 polymer matrix composite polymer electrolytes composite polymer electrolytes cpes which incorporating inorganic fillers polymer matrices howeverthe lithium metal batteries vertically aligned fillers interface contact ion transport
原文传递
Ring-opening Metathesis Polymerization to Access Degradable Iminebased Polymers
5
作者 Wu Li Si-Jia Cheng +2 位作者 You-Gui Li Muhammad Asadullah Khan Min Chen 《Chinese Journal of Polymer Science》 2025年第6期908-913,I0006,共7页
As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of t... As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of the novel imine-based polymer through the copolymerization of cyclooctene with cyclic imine comonomer via ROMP.Because of the efficient hydrolysis reactions of the imine group,the generated copolymer can be easily degraded under mild condition.Moreover,the generated degradable product was the telechelic polymer bearing amine group,which was highly challenged for its direct synthesis.And this telechelic polymer could also be used for the further synthesis of new polymer through post-transformation.The introduction of imine unit in this work provides a new example of the degradable polymer synthesis. 展开更多
关键词 Degradable polymer Ring-opening metathesis polymerization Imine-based polymer COpolymerIZATION
原文传递
Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization
6
作者 Bing Niu Honggao Huang +2 位作者 Liwei Luo Li Zhang Jianbo Tan 《Chinese Chemical Letters》 2025年第2期185-189,共5页
Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembl... Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembly and photoinduced seeded reversible addition-fragmentation chain transfer(RAFT)polymerization to prepare a diverse set of core-shell colloidal particles with a well-defined polymer layer.Chemical compositions,structures,and thicknesses of polymer layers could be conveniently regulated by using different types of monomers and feed[monomer]/[chain transfer agent]ratios during seeded RAFT polymerization. 展开更多
关键词 Core-shell colloidal particles Surface-initiated polymerization Photoinduced polymerization-induced self-assembly Seeded polymerization RAFT polymerization
原文传递
AQUEOUS STABLE FREE RADICAL POLYMERIZATION PROCESSES 被引量:1
7
作者 Andrea R. Szkurhan Michael K. Georges 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第4期309-312,共4页
An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations, under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and sus... An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations, under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process. 展开更多
关键词 Stable free radical polymerization Living-radical polymerization Aqueous polymerization Miniemulsion polymerization Emulsion polymerization Suspension polymerization
在线阅读 下载PDF
Chinese Journal of Polymer Science
8
《Chinese Journal of Polymer Science》 2025年第9期I0001-I0001,共1页
Aims and Scope,Chinese Journal of Polymer Science(CJPS)is a monthly journal published in Englishand sponsored by the Chinese Chemical Society and the Institute of Chemistry,,Chinese Academy of Sciences.CJPS isedited b... Aims and Scope,Chinese Journal of Polymer Science(CJPS)is a monthly journal published in Englishand sponsored by the Chinese Chemical Society and the Institute of Chemistry,,Chinese Academy of Sciences.CJPS isedited by a distinguished Editorial Board headed by Professor Qi-Feng Zhouand supported by an International Advisory Board in which many famous active polymerscientists alloverthe world are included.The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. 展开更多
关键词 advisory board International Advisory Board polymer Communications polymers Sciences editorial board Chinese Journal polymer Science Editorial Board
原文传递
Ring-closing-opening Copolymerization of Phthalaldehyde and Epoxide towards Acid-degradable Polyether and Polyurethane
9
作者 Jie Pang Yu-Bo Zhou +2 位作者 Li-Jun Liu Hong-Xin Zhang Jun-Peng Zhao 《Chinese Journal of Polymer Science》 2025年第6期964-972,I0009,共10页
Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymeriza... Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymerization of o-phthalaldehyde(OPA)and epoxide using Lewis pair type two-component organocatalysts for producing acetal-functionalized polyether and polyurethane.Notably,triethylborane as the Lewis acid,in comparison with tri(n-butyl)borane,more effectively enhances the polymerization activity by mitigating borane-induced reduction of the aldehyde group into extra initiating(borinic ester)species.Density functional theory(DFT)calculations present comparable energy barriers of OPA-epoxide cross-propagation and epoxide self-propagation,which is consistent with the experimental finding that an alternating-rich copolymer comprising mostly OPA-epoxide units but also epoxide-epoxide linkages is produced.In particular,when epoxide is added in a large excess,the product becomes a polyether containing acetal functionalities in the central part of the backbone and thus being convertible into polyurethane with refined acid degradability. 展开更多
关键词 Degradable polymer POLYURETHANE POLYETHER Anionic polymerization Ring-opening polymerization
原文传递
Backbone Degradable Polymers via Chain-growth Radical Polymerization
10
作者 Hai-Wang Lai Makoto Ouchi 《Chinese Journal of Polymer Science》 2025年第6期887-907,I0006,共22页
Chain-growth radical polymerization of vinyl monomers is essential for producing a wide range of materials with properties tailored to specific applications.However,the inherent resistance of the polymer's C―C ba... Chain-growth radical polymerization of vinyl monomers is essential for producing a wide range of materials with properties tailored to specific applications.However,the inherent resistance of the polymer's C―C backbone to degradation raises significant concerns regarding long-term environmental persistence,which also limits their potential in biomedical applications.To address these challenges,researchers have developed strategies to either degrade preexisting vinyl polymers or incorporate cleavable units into the backbone to modify them with enhanced degradability.This review explores the various approaches aimed at achieving backbone degradability in chain-growth radical polymerization of vinyl monomers,while also highlighting future research directions for the development of application-driven degradable vinyl polymers. 展开更多
关键词 Radical polymerization DEGRADABLE DEpolymerIZATION Vinyl polymer Backbone degradation
原文传递
In Situ Polymerization in COF Boosts Li-Ion Conduction in Solid Polymer Electrolytes for Li Metal Batteries
11
作者 Junchen Meng Mengjia Yin +2 位作者 Kairui Guo Xingping Zhou Zhigang Xue 《Nano-Micro Letters》 2025年第10期473-492,共20页
Solid polymer electrolytes(SPEs)have garnered considerable interest in the field of lithium metal batteries(LMBs)owing to their exceptional mechanical strength,excellent designability,and heightened safety characteris... Solid polymer electrolytes(SPEs)have garnered considerable interest in the field of lithium metal batteries(LMBs)owing to their exceptional mechanical strength,excellent designability,and heightened safety characteristics.However,their inherently low ion transport efficiency poses a major challenge for their application in LMBs.To address this issue,covalent organic framework(COF)with their ordered ion transport channels,chemical stability,large specific surface area,and designable multifunctional sites has shown promising potential to enhance lithium-ion conduction.Here,we prepared an anionic COF,Tp Pa-COOLi,which can catalyze the ring-opening copolymerization of cyclic lactone monomers for the in situ fabrication of SPEs.The design leverages the high specific surface area of COF to facilitate the absorption of polymerization precursor and catalyze the polymerization within the pores,forming additional COF-polymer junctions that enhance ion transport pathways.The partial exfoliation of COF achieved through these junctions improved its dispersion within the polymer matrix,preserving ion transport channels and facilitating ion transport across COF grain boundaries.By controlling variables to alter the crystallinity of Tp Pa-COOLi and the presence of-COOLi substituents,Tp Pa-COOLi with partial long-range order and-COOLi substituents exhibited superior electrochemical performance.This research demonstrates the potential in constructing high-performance SPEs for LMBs. 展开更多
关键词 Covalent organic framework In situ polymerization Ring-opening polymerization Solid polymer electrolyte Lithium metal batteries
在线阅读 下载PDF
Hyperbranched Poly(α-aminonitrile)s Constructed via Catalyst-Free Multicomponent Polymerization of Trialdehydes,Diamines and Trimethylsilyl Cyanide
12
作者 Tian-Yu Cheng Jian-Qing Ding +2 位作者 Yu-Xin Tong Jun-Guo Fang Jia Wang 《Chinese Journal of Polymer Science》 2025年第2期341-349,共9页
Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great signif... Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance.In this work,trialdehydes,diamines,and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions,producing hyperbranched poly(α-aminonitrile)s with high molecular weights(M_(w) up to 4.87×10^(4))in good yields(up to 85%).The hyperbranched poly(α-aminonitrile)s have good solubility in commonly used organic solvents,high thermal stability as well as morphological stability.Furthermore,due to the numerous aldehyde groups in their branched chains,these hb-poly(α-aminonitrile)s can undergo one-pot,two-step,four-component post-polymerization with high efficiency.This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes,amines and trimethylsilyl cyanide,but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials. 展开更多
关键词 CATALYST-FREE Multicomponent polymerization Hyperbranched polymer Post-polymerization
原文传递
Cyclic ethers-based solid electrolyte derived from in situ ring-opening polymerization strategy
13
作者 Wubin Du Yong Wu +7 位作者 Hao Cheng Ran Bu Kang Shen Yuanzhong Tan Zhijun Wu Hongge Pan Yifan Wang Yingying Lu 《Green Energy & Environment》 2025年第7期1359-1376,共18页
Although solid-state polymer electrolytes(SPEs)are expected to solve the safety hazards and limited energy density in the energy storage systems,they still encounter an inferior electrode/electrolyte interface when pr... Although solid-state polymer electrolytes(SPEs)are expected to solve the safety hazards and limited energy density in the energy storage systems,they still encounter an inferior electrode/electrolyte interface when prepared in an ex situ manner.Recently,in situ polymerization of SPEs favor high interfacial infiltrability,improved interface contact,and reduced interface resistance,owing to the formation of a"superconformal"interface between electrode and electrolyte.Especially,in situ strategies employing ring-opening polymerization(ROP)are emerging as dazzling stars,further enabling moderate polymerization conditions,controllable molecular structure,and reduced interfacial side reaction.As the main monomers that can be in situ polymerized via the ROP strategy,cyclic ethers have been used to construct the CE-SPEs with many merits,including good battery electrochemical performances and a simple assembly process.Here,as a systematic summarization of the existing reports,this review focuses on the polymerization mechanism of ROP,the design principles of CE-SPEs electrolytes,and the recent application of in situ CE-SPEs.In particular,this review thoroughly discusses the selection of different cyclic monomers,initiators and various modification approaches in in situ fabricating CE-SPEs.Ending with offering future challenges and perspectives,this review envisions shedding light on the profound understanding and scientific guidance for further development of high-performance in situ CE-SPEs. 展开更多
关键词 Cyclic ethers Solid-state polymer electrolytes Ring-opening polymerization In situ polymerization
在线阅读 下载PDF
Photocontrolled Solution[2+2]Polymerization of p-Phenylenediacrylate and Depolymerization
14
作者 Miao-Yan Yi Yu Jiang Sai-Hu Liao 《Chinese Journal of Polymer Science》 2025年第11期1973-1980,I0007,共9页
The[2+2]photopolymerization of bisolefinic monomers is an important method for the synthesis of polymeric materials.However,these processes are usually carried out in solid states under the irradiation of high-energy ... The[2+2]photopolymerization of bisolefinic monomers is an important method for the synthesis of polymeric materials.However,these processes are usually carried out in solid states under the irradiation of high-energy UV light,while the corresponding[2+2]polymerization in solution has proved to be inefficient due to the lack of preassembly of the monomers.Herein,we demonstrate that the[2+2]polymerization of p-phenylenediacrylate monomers can be achieved in solution under visible light by employing energy transfer catalysis with 2,2'-methoxythioxanthone as a photocatalyst.Because no preassembly is required,this solution polymerization is applicable to p-phenylenediacrylate monomers with different ester groups,affording a series of cyclobutane-imbedded full-carbon chain polymers with high thermal stability,good solubility,and processibility.In addition,by virtue of the reversibility of the photo[2+2]cycloaddition,this[2+2]photopolymerization product can also undergo depolymerization to lower molecular weight polymers,suggesting the potential of this class of photopolymerization in the development of closed-loop chemical recyclable polymers. 展开更多
关键词 [2+2]polymerization PHOTOpolymerIZATION p-Phenylenediacrylates ORGANOCATALYSIS DEpolymerIZATION
原文传递
Structural Difference in the Core-forming Block Reshapes RAFT-mediated Polymerization-induced Self-assembly
15
作者 Yue-Xi Zhan Li Zhang +1 位作者 Chun Feng Jian-Bo Tan 《Chinese Journal of Polymer Science》 2025年第3期429-438,共10页
Polymerization-induced self-assembly(PISA)has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies.However,the controlled introduction ... Polymerization-induced self-assembly(PISA)has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies.However,the controlled introduction of branching into the core-forming block and the effect on the morphologies of block copolymer nanoparticles under PISA conditions have rarely been explored.Herein,a series of multifunctional macromolecular chain transfer agents(macro-CTAs)were first synthesized by a two-step green light-activated photoiniferter polymerization using two types of chain transfer monomers(CTMs).These macro-CTAs were then used to mediate reversible addition-fragmentation chain transfer(RAFT)dispersion polymerization of styrene(St)to prepare block copolymers with different core-forming block structures and the assemblies.The effect of the core-forming block structure on the morphology of block copolymer nanoparticles was investigated in detail.Transmission electron microscopy(TEM)analysis indicated that the brush-like core-forming block structure facilitated the formation of higher-order morphologies,while the branched core-forming block structure favored the formation of lower-order morphologies.Moreover,it was found that using macroCTAs with a shorter length also promoted the formation of higher-order morphologies.Finally,structures of block copolymers and the assemblies were further controlled by changing the structure of macro-CTA or using a binary mixture of two different macro-CTAs.We expect that this work not only sheds light on the synthesis of block copolymer nanoparticles but also provide important mechanistic insights into PISA of nonlinear block copolymers. 展开更多
关键词 polymerization-induced self-assembly RAFT polymerization Block copolymer nanoparticles Branched structure
原文传递
Polymeric nanocarriers for therapeutic gene delivery 被引量:1
16
作者 Jiayuan Zhang Xinyu Yang +3 位作者 Zhichao Chang Wenwei Zhu Yuhua Ma Haisheng He 《Asian Journal of Pharmaceutical Sciences》 2025年第1期1-25,共25页
The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers... The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery. 展开更多
关键词 polymeric nanocarriers Therapeutic gene delivery Cationic polymers DISEASES Transfection efficiency STRATEGIES
暂未订购
Sulfur-Doped Carbonized Polymer Dots:A Biocompatible Photocatalyst for Rapid Aqueous PET-RAFT Polymerization 被引量:1
17
作者 Yue Yu Songyuan Tao +3 位作者 Qingsen Zeng Zhihui Ma Kai Zhang Bai Yang 《Carbon Energy》 2025年第3期186-195,共10页
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin... To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields. 展开更多
关键词 aqueous PET-RAFT polymerization carbonized polymer dots photocatalysis ultrahigh efficiency
在线阅读 下载PDF
Polymers in Drug Delivery 被引量:3
18
作者 Apurva Srivastava Tejaswita Yadav +3 位作者 Soumya Sharma Anjali Nayak Akanksha Akanksha Kumari Nidhi Mishra 《Journal of Biosciences and Medicines》 2016年第1期69-84,共16页
Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of i... Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of implants for controlled drug delivery. Polymers used in colloidal drug carrier systems, consisting of small particles, show great advantage in drug delivery systems because of optimized drug loading and releasing property. Polymeric nano particulate systems are available in wide variety and have established chemistry. Non toxic, biodegradable and biocompatible polymers are available. Some nano particulate polymeric systems possess ability to cross blood brain barrier. They offer protection against chemical degradation. Smart polymers are responsive to atmospheric stimulus like change in temperature;pressure, pH etc. thus are extremely beneficial for targeted drug delivery. Some polymeric systems conjugated with antibodies/specific biomarkers help in detecting molecular targets specifically in cancers. Surface coating with thiolated PEG, Silica-PEG improves water solubility and photo stability. Surface modification of drug carriers e.g. attachment with PEG or dextran to the lipid bilayer increases their blood circulation time. Polymer drug conjugates such as Zoladex, Lupron Depot, On Caspar PEG intron are used in treatment of prostate cancer and lymphoblastic leukemia. Polymeric Drug Delivery systems are being utilized for controlled drug delivery assuring patient compliance. 展开更多
关键词 polymeric Drug Delivery Biocompatible polymers Smart polymers polymeric Implants polymeric Drug Formulations
在线阅读 下载PDF
Preparation of ABA triblock copolymer assemblies through “one-pot” RAFT PISA 被引量:1
19
作者 Yanling Cao Yan Shi +1 位作者 Xiaohui Wu Liqun Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第6期1660-1664,共5页
Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc)amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation cha... Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc)amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT)dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide)trithiocarbonate(PDMAc-TTC-PDMAc)bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs)wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm)and vesicles with HHHs features were also synthesized in high solid content systems(30 wt%and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA. 展开更多
关键词 Reversible addition-fragmentation chain transfer polymerIZATION polymerization induced self-assembly Triblock copolymer Dispersion polymerization Block copolymer micelles
原文传递
Electrochemiluminescence sensor for kanamycin based on electropolymerized molecularly imprinted polymer film
20
作者 Li Xintong Li Xinrui +2 位作者 Zhang Xinyu Han Yongbin Lian Wenjing 《电镀与精饰》 北大核心 2025年第10期135-142,共8页
In this work,by combining the specific selectivity of molecularly imprinted polymer(MIP)with a simple and sensitive electrochemiluminescence(ECL)detection method,a molecularly imprinted ECL sensor for kanamycin(KA)was... In this work,by combining the specific selectivity of molecularly imprinted polymer(MIP)with a simple and sensitive electrochemiluminescence(ECL)detection method,a molecularly imprinted ECL sensor for kanamycin(KA)was developed.The MIP film was synthesized on the surface of gold electrode via electrochemical polymerization,using pyrrole(PY)as the functional monomer and KA as the template molecule.The commonly used luminescent reagent Ru(bpy)32+was employed as the ECL probe,and its co-reagent tripropylamine(TPA)was added to enhance the detection sensitivity of the sensor.Quantitative analysis of KA was performed by evaluating the difference in ECL responses between MIP film electrodes after KA removal and KA rebinding.The sensor exhibited high selectivity,good reproducibility,and stability toward KA,with a linear range of 5.00×10^(-8) to 1.00×10^(-5) mol·L^(-1) and a limit of detection of 1.67×10^(-8) mol·L^(-1)(S/N=3).This work would provide a new idea for the development of simple and sensitive molecularly imprinted ECL sensors. 展开更多
关键词 molecularly imprinted polymer electrochemical polymerization ELECTROCHEMILUMINESCENCE KANAMYCIN
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部