摘要
The[2+2]photopolymerization of bisolefinic monomers is an important method for the synthesis of polymeric materials.However,these processes are usually carried out in solid states under the irradiation of high-energy UV light,while the corresponding[2+2]polymerization in solution has proved to be inefficient due to the lack of preassembly of the monomers.Herein,we demonstrate that the[2+2]polymerization of p-phenylenediacrylate monomers can be achieved in solution under visible light by employing energy transfer catalysis with 2,2'-methoxythioxanthone as a photocatalyst.Because no preassembly is required,this solution polymerization is applicable to p-phenylenediacrylate monomers with different ester groups,affording a series of cyclobutane-imbedded full-carbon chain polymers with high thermal stability,good solubility,and processibility.In addition,by virtue of the reversibility of the photo[2+2]cycloaddition,this[2+2]photopolymerization product can also undergo depolymerization to lower molecular weight polymers,suggesting the potential of this class of photopolymerization in the development of closed-loop chemical recyclable polymers.
基金
financially supported by the National Natural Science Foundation of China(Nos.22371240 and 22361132535)
Xiamen University for the financial support。