Peroxynitrite(ONOO^(−))is central to both physiological signaling and diverse pathological processes.Its dual nature underscores the need for precise tools to investigate its spatiotemporal dynamics and biological fun...Peroxynitrite(ONOO^(−))is central to both physiological signaling and diverse pathological processes.Its dual nature underscores the need for precise tools to investigate its spatiotemporal dynamics and biological functions.However,the controlled generation and real-time tracking of ONOO^(−)remain challenging due to its short half-life and high reactivity.Current small-molecule ONOO^(−)donors often suffer from limitations such as slow release,low efficiency,and off-target effects.To overcome these challenges,here we report a new class of photo-triggered ONOO^(−)donors(O-PND and Si-PND)based on a single rhodamine-derived scaffold,enabling precise ONOO^(−)release with built-in fluorescence calibration.These molecular tools facilitate efficient ONOO^(−)generation under blue light irradiation,as confirmed in PBS and live cells,and exhibit excellent cell membrane permeability.Upon intracellular activation,O-PND and Si-PND induced a marked increase in oxidative stress.However,further studies reveal that the rapid transient ONOO^(−)burst in RAW264.7 cells was insufficient to significantly modulate macrophage polarization.Collectively,these robust self-reporting ONOO^(−)donors provide a powerful single-molecule platform for investigating ONOO^(−)-mediated biological mechanisms with spatiotemporal precision.展开更多
Photo-Cross-Linkable hydrogel has attracted immense interest in the regeneration of bone repair and regeneration strategies due to its superior biocompatibility and tunable mechanical properties.Recently,Nb was report...Photo-Cross-Linkable hydrogel has attracted immense interest in the regeneration of bone repair and regeneration strategies due to its superior biocompatibility and tunable mechanical properties.Recently,Nb was reported to strongly promote the bone regeneration process via an accelerated osteoblast-modulated alkaline phosphatase activity mechanism.In particular,Nb2C MXenes have drawn widespread attention due to their excellent biocompatibility and ability to induce bone formation.However,the easy agglomeration of Nb2C nanosheets and subsequent low cell endocytosis efficacy greatly suppressed the osteogenesis effect.In this study,a subtractive nanopore-engineered Nb2C MXene was prepared through a microwave combustion method,gelatin methacrylate was used as the carrier hydrogel,and the photo-triggered Porous-Nb2C@GelMA hydrogel was fabricated by a photo-triggered process.The pore-forming strategy not only successfully improved the distribution of Nb2C and formed more homogenous Porous-Nb2C@GelMA hydrogels but also guided bone marrow mesenchymal stem cells(BMSCs)toward osteoblast differentiation.Porous Nb2C provided convenient cellular grasping and endocytosis for BMSCs,which further created a favorable environment for differentiation and osteogenesis.This,in turn,leads to an increase in the expression of osteogenic markers,such as ALP and ARS,as well as osteogenic factors,such as BMP-2,COL-1,OCN,and OPN.Consequently,enhancing the regenerative microenvironment by incorporating porous Nb2C composite hydrogels shows promise for application in bone regeneration.展开更多
A photocleavable low-molecular-weight hydrogelator (LMWG) was synthesized based on coumarin derivative.~1H NMR and UV spectroscopy study suggested that the gelator had good gelling ability, and the driving force for t...A photocleavable low-molecular-weight hydrogelator (LMWG) was synthesized based on coumarin derivative.~1H NMR and UV spectroscopy study suggested that the gelator had good gelling ability, and the driving force for the gelation were hydrogen bonding and π-π stacking. This molecular hydrogel exhibited satisfied photocleavage at C-N bond in 7-amino coumarin with the light irradiation (365 nm,77.5 mW/cm^2). The promising photo-triggered drug release of antineoplastics cytarabine hydrochloride has been obtained, due to the photocleavage motived gel-sol transition.展开更多
Nitric oxide(NO) donors are versatile tools for nitric oxide biology. The biological response of NO is dependent on the transient concentration and the sustained duration. N-Nitrosated rhodamines are photo-triggered...Nitric oxide(NO) donors are versatile tools for nitric oxide biology. The biological response of NO is dependent on the transient concentration and the sustained duration. N-Nitrosated rhodamines are photo-triggered and photo-calibrated NO donors. We recently discovered that suppression of the dihedral angle between the N-nitroso fragment with the rhodamine scaffold facilitates NO release.Inspired by this discovery, we developed a fast-releasing NO donor (NOD575) suitable for biological applications, e.g., the pulmonary arterial smooth muscle cells(PASMCs).展开更多
Imparting one-dimensional(1D)ultrafine organic nanowires with tailored ligands and atomically-dispersed central noble metal to craft high-performance hybrid single atom electrocatalysts offers a prospective yet challe...Imparting one-dimensional(1D)ultrafine organic nanowires with tailored ligands and atomically-dispersed central noble metal to craft high-performance hybrid single atom electrocatalysts offers a prospective yet challenging approach for the advancement in hydrogen evolution reactions(HER).Herein,we report the evaporation-induced self-assembly of sequence-defined amphiphilic alternating azopeptoids(AAAPs)to generate photo-responsive and micron-scale ultrafine peptoid nanowires(UFPNWs)with a diameter of~1.8 nm via pendants'hydrophobic conjugate stacking mechanism,exemplifying the finest biomimetic polymers-based nanowires to date.A series of 1D UFPNWs-based single-atom catalysts(SACs)were meticulously fabricated using the chelation interaction between Pt ions and nitrogenous ligands.The photo-controllable electrocatalytic performance was evaluated toward acidic HER,which was highly dependent on the presence of Pt elements,the structural characteristic of supports,and the peripheral coordination microenvironment of the center Pt atoms.Notably,the Pt-based hybrid SACs using terpyridine-modified UFPNWs as support presented favorable electrocatalytic capacity with an overpotential of~20 m V at a current density of 10 m A cm^(-2),and a mass activity of 89.6 times greater than commercial Pt/C catalyst.Our work paves an appealing avenue for the construction of stimuli-responsive 1D organic nanowire-based hybrid catalysts with controllable electrocatalytic HER performance.展开更多
基金supported by the Natural Science Foundation of Shanghai(24ZR1418800)the National Natural Science Foundation of China(22278138)+1 种基金the Fundamental Research Funds for the Central Universities(JKY01241620)the Shanghai Academic/Technology Research Leader(22XD1-421000).
文摘Peroxynitrite(ONOO^(−))is central to both physiological signaling and diverse pathological processes.Its dual nature underscores the need for precise tools to investigate its spatiotemporal dynamics and biological functions.However,the controlled generation and real-time tracking of ONOO^(−)remain challenging due to its short half-life and high reactivity.Current small-molecule ONOO^(−)donors often suffer from limitations such as slow release,low efficiency,and off-target effects.To overcome these challenges,here we report a new class of photo-triggered ONOO^(−)donors(O-PND and Si-PND)based on a single rhodamine-derived scaffold,enabling precise ONOO^(−)release with built-in fluorescence calibration.These molecular tools facilitate efficient ONOO^(−)generation under blue light irradiation,as confirmed in PBS and live cells,and exhibit excellent cell membrane permeability.Upon intracellular activation,O-PND and Si-PND induced a marked increase in oxidative stress.However,further studies reveal that the rapid transient ONOO^(−)burst in RAW264.7 cells was insufficient to significantly modulate macrophage polarization.Collectively,these robust self-reporting ONOO^(−)donors provide a powerful single-molecule platform for investigating ONOO^(−)-mediated biological mechanisms with spatiotemporal precision.
基金supported by the Natural Science Foundation of China(82202751,Derong Xu,82372478,Chuanli Zhou,62375249,U1803128,Meng Qiu)the Taishan Scholar Project(tsqn202211362,Chuanli Zhou,tsqn201909054,Meng Qiu)+1 种基金the Natural Science Foundation of Shandong Province(ZR2021MH020,Chuanli Zhou,ZR2022JQ22,Meng Qiu)the Fundamental Research Funds for the Central Universities(202341006,Meng Qiu)。
文摘Photo-Cross-Linkable hydrogel has attracted immense interest in the regeneration of bone repair and regeneration strategies due to its superior biocompatibility and tunable mechanical properties.Recently,Nb was reported to strongly promote the bone regeneration process via an accelerated osteoblast-modulated alkaline phosphatase activity mechanism.In particular,Nb2C MXenes have drawn widespread attention due to their excellent biocompatibility and ability to induce bone formation.However,the easy agglomeration of Nb2C nanosheets and subsequent low cell endocytosis efficacy greatly suppressed the osteogenesis effect.In this study,a subtractive nanopore-engineered Nb2C MXene was prepared through a microwave combustion method,gelatin methacrylate was used as the carrier hydrogel,and the photo-triggered Porous-Nb2C@GelMA hydrogel was fabricated by a photo-triggered process.The pore-forming strategy not only successfully improved the distribution of Nb2C and formed more homogenous Porous-Nb2C@GelMA hydrogels but also guided bone marrow mesenchymal stem cells(BMSCs)toward osteoblast differentiation.Porous Nb2C provided convenient cellular grasping and endocytosis for BMSCs,which further created a favorable environment for differentiation and osteogenesis.This,in turn,leads to an increase in the expression of osteogenic markers,such as ALP and ARS,as well as osteogenic factors,such as BMP-2,COL-1,OCN,and OPN.Consequently,enhancing the regenerative microenvironment by incorporating porous Nb2C composite hydrogels shows promise for application in bone regeneration.
基金financial support from the National Natural Science Foundation of China (Nos. 21672164, 21372177)
文摘A photocleavable low-molecular-weight hydrogelator (LMWG) was synthesized based on coumarin derivative.~1H NMR and UV spectroscopy study suggested that the gelator had good gelling ability, and the driving force for the gelation were hydrogen bonding and π-π stacking. This molecular hydrogel exhibited satisfied photocleavage at C-N bond in 7-amino coumarin with the light irradiation (365 nm,77.5 mW/cm^2). The promising photo-triggered drug release of antineoplastics cytarabine hydrochloride has been obtained, due to the photocleavage motived gel-sol transition.
基金financially supported by the National Natural Science Foundation of China (No. 21572061)the Fundamental Research Funds for the Central Universities (No. WY1516017)
文摘Nitric oxide(NO) donors are versatile tools for nitric oxide biology. The biological response of NO is dependent on the transient concentration and the sustained duration. N-Nitrosated rhodamines are photo-triggered and photo-calibrated NO donors. We recently discovered that suppression of the dihedral angle between the N-nitroso fragment with the rhodamine scaffold facilitates NO release.Inspired by this discovery, we developed a fast-releasing NO donor (NOD575) suitable for biological applications, e.g., the pulmonary arterial smooth muscle cells(PASMCs).
基金supported by the National Natural Science Foundation of China(52373114,52073092,22231007,22001071)。
文摘Imparting one-dimensional(1D)ultrafine organic nanowires with tailored ligands and atomically-dispersed central noble metal to craft high-performance hybrid single atom electrocatalysts offers a prospective yet challenging approach for the advancement in hydrogen evolution reactions(HER).Herein,we report the evaporation-induced self-assembly of sequence-defined amphiphilic alternating azopeptoids(AAAPs)to generate photo-responsive and micron-scale ultrafine peptoid nanowires(UFPNWs)with a diameter of~1.8 nm via pendants'hydrophobic conjugate stacking mechanism,exemplifying the finest biomimetic polymers-based nanowires to date.A series of 1D UFPNWs-based single-atom catalysts(SACs)were meticulously fabricated using the chelation interaction between Pt ions and nitrogenous ligands.The photo-controllable electrocatalytic performance was evaluated toward acidic HER,which was highly dependent on the presence of Pt elements,the structural characteristic of supports,and the peripheral coordination microenvironment of the center Pt atoms.Notably,the Pt-based hybrid SACs using terpyridine-modified UFPNWs as support presented favorable electrocatalytic capacity with an overpotential of~20 m V at a current density of 10 m A cm^(-2),and a mass activity of 89.6 times greater than commercial Pt/C catalyst.Our work paves an appealing avenue for the construction of stimuli-responsive 1D organic nanowire-based hybrid catalysts with controllable electrocatalytic HER performance.