A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The s...A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word's period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group. This code has very high efficiency and thus the data transmission rate is increased greatly.展开更多
A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The s...A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word’s period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group. This code has very high efficiency and thus the data transmission rate is increased greatly.展开更多
To address the challenges of fault line identification and low detection accuracy of wave head in Fault Location(FL)research of distribution networks with complex topologies,this paper proposes an FL method of Multi-B...To address the challenges of fault line identification and low detection accuracy of wave head in Fault Location(FL)research of distribution networks with complex topologies,this paper proposes an FL method of Multi-Branch distribution line based on Maximal Overlap Discrete Wavelet Transform(MODWT)combined with the improved Teager Energy Operator(TEO).Firstly,the current and voltage Traveling Wave(TW)signals at the head of each line are extracted,and the fault-induced components are obtained to determine the fault line by analyzing the polarity of the mutation amount of fault voltage and current TWs.Subsequently,the fault discrimination mark is calculated based on the fault-induced line-mode current and the zero-mode voltage,with the fault type determined by comparing each mark’s value against the fault discrimination table,transforming the FL problem in complex topology into a single-line FL problem.Finally,the fault voltage TW is extracted fromthe fault line,and the wave head detection method based on MODWT combined with improved TEO is used to precisely identify the arrival instants of both the first TW wave head and its first reflection at each line terminal,and then the FL result is calculated by applying the double-ended TW ranging formula that removes the influence of wave velocity.Simulation results demonstrate that the proposed method accurately identifies the fault line and types of faults occurring and maintains the ranging accuracy within 0.5%under various fault scenarios.展开更多
文摘A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word's period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group. This code has very high efficiency and thus the data transmission rate is increased greatly.
文摘A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word’s period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group. This code has very high efficiency and thus the data transmission rate is increased greatly.
基金funded by the project of Guizhou Power Grid Co.,Ltd.Guiyang Power Supply Bureau(No.GZKJXM20232317).
文摘To address the challenges of fault line identification and low detection accuracy of wave head in Fault Location(FL)research of distribution networks with complex topologies,this paper proposes an FL method of Multi-Branch distribution line based on Maximal Overlap Discrete Wavelet Transform(MODWT)combined with the improved Teager Energy Operator(TEO).Firstly,the current and voltage Traveling Wave(TW)signals at the head of each line are extracted,and the fault-induced components are obtained to determine the fault line by analyzing the polarity of the mutation amount of fault voltage and current TWs.Subsequently,the fault discrimination mark is calculated based on the fault-induced line-mode current and the zero-mode voltage,with the fault type determined by comparing each mark’s value against the fault discrimination table,transforming the FL problem in complex topology into a single-line FL problem.Finally,the fault voltage TW is extracted fromthe fault line,and the wave head detection method based on MODWT combined with improved TEO is used to precisely identify the arrival instants of both the first TW wave head and its first reflection at each line terminal,and then the FL result is calculated by applying the double-ended TW ranging formula that removes the influence of wave velocity.Simulation results demonstrate that the proposed method accurately identifies the fault line and types of faults occurring and maintains the ranging accuracy within 0.5%under various fault scenarios.