Pd-based catalysts have been extensively studied in the catalytic oxidation of methane,but their longterm stability and water resistance are unsatisfactory as the active sites are susceptible to water toxicity.The add...Pd-based catalysts have been extensively studied in the catalytic oxidation of methane,but their longterm stability and water resistance are unsatisfactory as the active sites are susceptible to water toxicity.The addition of Pt to Pd-based catalysts is found to be the most effective and promising method.However,distinct states of existence of Pt can affect the catalytic performance to different degrees,even negatively.Therefore,the impact mechanism of Pt on Pd-based catalysts needs to be further understood.In this work,A-site defective La_(0.9)AlO_(x)perovskite was used as a support,and the state of Pt in catalysts was regulated by adjusting the introducing sequence of Pd and Pt,It is found that only when Pt is introduced preferentially,the activity and water resistance of the bimetal can be improved.Combining a series of characterization results of the fresh catalysts,reduced catalysts,and the samples after reduction and use,it is found that the higher Pt^(2+)content in the catalyst is the main reason for promoting bimetallic properties,while more Pt0has an inhibitory effect.This work provides a new understanding of the promotion effect of Pt on Pd-Pt bimetal in the catalytic oxidation reaction of methane.展开更多
A robust bulky bornylimidazo[1,5-a]pyridin-3-ylidene allylic Pd complex was synthesized and well characterized.DFT calculations indicated that the ligand acts as a strongσ-donor andπ-acceptor endowing the active Pd(...A robust bulky bornylimidazo[1,5-a]pyridin-3-ylidene allylic Pd complex was synthesized and well characterized.DFT calculations indicated that the ligand acts as a strongσ-donor andπ-acceptor endowing the active Pd(0)center with high electron density and good coordination towards olefin.The introduction of a bulky,rigid bornyl ring further improved the catalytic efficacy due to the matched steric effects.This catalyst showed high efficiency and versatility in theα-arylation and Heck cyclization/Suzuki crosscoupling reactions at mild reaction conditions.Desired 3,3-disubstituted oxindoles,especially featuring an allylic-derived C3-quaternary stereocenter were obtained in high yields.Furthermore,the concise synthesis of bioactive heterocycle-fused indoline alkaloids was successfully proved.展开更多
Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in...Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in CH_(4)combustion.We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states.Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity,with activation energy(Ea)at 73 kJ/mol,while Pd/H-ZSM-5 displayed the highest turnover frequency(TOF)at 19.6×10^(−3)sec^(−1),presumably owing to its large particles with more step sites providing active sites in one particle for CH_(4)activation.Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ions on ion-exchange sites yielded the lowest apparent activity and TOF.Furthermore,Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition,but introducing 3 vol.%H_(2)O caused the CH_(4)conversion rate on Pd/H-MOR drop from 100%to 63%and that on Pd/H-ZSM-5 decreased remarkably from 82%to 36%.The former was shown to originate fromzeolite structural dealumination,and the latter principally owed to Pd aggregation and the loss of active PdO.展开更多
基金Project supported by the National Key Research and Development Program(2022YFB3504200)National Natrual Science Foundation of China(22376061,21922602,22076047,U21A20326)+1 种基金Shanghai Science and Technology Innovation Action Plan(20dz1204200)Fundamental Re search Funds for the Central Universities。
文摘Pd-based catalysts have been extensively studied in the catalytic oxidation of methane,but their longterm stability and water resistance are unsatisfactory as the active sites are susceptible to water toxicity.The addition of Pt to Pd-based catalysts is found to be the most effective and promising method.However,distinct states of existence of Pt can affect the catalytic performance to different degrees,even negatively.Therefore,the impact mechanism of Pt on Pd-based catalysts needs to be further understood.In this work,A-site defective La_(0.9)AlO_(x)perovskite was used as a support,and the state of Pt in catalysts was regulated by adjusting the introducing sequence of Pd and Pt,It is found that only when Pt is introduced preferentially,the activity and water resistance of the bimetal can be improved.Combining a series of characterization results of the fresh catalysts,reduced catalysts,and the samples after reduction and use,it is found that the higher Pt^(2+)content in the catalyst is the main reason for promoting bimetallic properties,while more Pt0has an inhibitory effect.This work provides a new understanding of the promotion effect of Pt on Pd-Pt bimetal in the catalytic oxidation reaction of methane.
基金Financial supports from the National Natural Science Foundation of China(No.22101133)Natural Science Foundation of Jiangsu Province(No.BK20200768)+1 种基金Nanjing Forestry University,the National Natural Science Foundation of China(the Outstanding Youth Scholars(Overseas,2021)project)the Lab project of the State Key Laboratory of Physical Chemistry of Solid Surfaces are greatly acknowledged.
文摘A robust bulky bornylimidazo[1,5-a]pyridin-3-ylidene allylic Pd complex was synthesized and well characterized.DFT calculations indicated that the ligand acts as a strongσ-donor andπ-acceptor endowing the active Pd(0)center with high electron density and good coordination towards olefin.The introduction of a bulky,rigid bornyl ring further improved the catalytic efficacy due to the matched steric effects.This catalyst showed high efficiency and versatility in theα-arylation and Heck cyclization/Suzuki crosscoupling reactions at mild reaction conditions.Desired 3,3-disubstituted oxindoles,especially featuring an allylic-derived C3-quaternary stereocenter were obtained in high yields.Furthermore,the concise synthesis of bioactive heterocycle-fused indoline alkaloids was successfully proved.
基金supported by the National Key R&D Program of China(No.2022YFC3701603)the National Natural Science Foundation of China(Nos.22106133,52070168)+1 种基金the Key R&D Plan of Zhejiang Province(No.2023C03127)the Fundamental Research Funds for the Central Universities(No.226-2022-00150).
文摘Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in CH_(4)combustion.We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states.Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity,with activation energy(Ea)at 73 kJ/mol,while Pd/H-ZSM-5 displayed the highest turnover frequency(TOF)at 19.6×10^(−3)sec^(−1),presumably owing to its large particles with more step sites providing active sites in one particle for CH_(4)activation.Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ions on ion-exchange sites yielded the lowest apparent activity and TOF.Furthermore,Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition,but introducing 3 vol.%H_(2)O caused the CH_(4)conversion rate on Pd/H-MOR drop from 100%to 63%and that on Pd/H-ZSM-5 decreased remarkably from 82%to 36%.The former was shown to originate fromzeolite structural dealumination,and the latter principally owed to Pd aggregation and the loss of active PdO.