Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and low...Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.展开更多
EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which i...EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which ideally can be converted to electricity with high efficiency(>80%).However,there exist serious difficulties to realize such conversion in a fusion device,due to the high energy density and high voltage required.To comprehensively describe the progress of the EHL-2 physics design,this work presents preliminary considerations of approaches for achieving energy conversion,highlighting critical issues for further investigation.Specifically,we provide an initial simulation of alpha particle extraction in the EHL-2 ST configuration as a starting point for p-^(11)B fusion energy conversion.展开更多
An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designe...An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.展开更多
High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was...High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was observed in the time resolved turbulent fluxes with positive skewness and large kurtosis. The contribution of the large sporadic bursts to the transport losses were estimated. The analysis shows that the turbulent fluxes have different behaviour in different frequency domains and the probability distribution functions (PDFs) of the particle and energy fluxes present two distinct scaling ranges. All these are essentially consistent with the predictions of the self-organized criticality (SOC) model, though further studies are needed.展开更多
Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and c...Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and coalescence,have been widely studied by using the particle-based method named many-body dissipative particle dynamics(MDPD).However,the detailed information on heat transfer needs further description.This paper develops a modified MDPD with energy conservation(MDPDE)by introducing a temperature-dependent long-term attractive interaction.By fitting or deriving the expressions of the strength of the attractive force,the exponent of the weight function in the dissipative force,and the mesoscopic heat friction coefficient about temperature,we calculate the viscosity,self-diffusivity,thermal conductivity,and surface tension,and obtain the Schmidt number Sc,the Prandtl number P r,and the Ohnesorge number Oh for 273 K to 373 K.The simulation data of MDPDE coincide well with the experimental data of water,indicating that our model can be used to simulate the dynamic behaviors of liquid water.Furthermore,we compare the equilibrium contact angle of droplets wetting on solid surfaces with that calculated from three interfacial tensions by MDPDE simulations.The coincident results not only stand for the validation of Young’s equation at mesoscale,but manifest the reliability of our MDPDE model and applicability to the cases with free surfaces.Our model can be extended to study the multiphase flow withcomplex heat and mass transfer.展开更多
The energetic particle detector on China's space station can determine the energy, flux, and direction of medium-and highenergy protons, electrons, heavy ions, and neutrons within the path of the station's orb...The energetic particle detector on China's space station can determine the energy, flux, and direction of medium-and highenergy protons, electrons, heavy ions, and neutrons within the path of the station's orbit. It also assesses the linear energy transfer(LET)spectra and radiation dose rates generated by these particles. Neutron detection is a significant component of this work, utilizing a new type of Cs_(2)LiYCl_(6): Ce scintillator material along with plastic scintillators as sensors. In-orbit testing has demonstrated the efficient identification of space neutrons and gamma rays(n/γ). This data plays a crucial role in supporting manned space engineering, scientific research, and other related fields.展开更多
As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,fo...As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,for instance,limited processing capability,a few energy sources,and erratic availability being some of the common ones.Correspondingly,these problems require an effective task allocation algorithmto optimize the resources through continued high system performance and dependability in dynamic environments.This paper proposes an improved Particle Swarm Optimization technique,known as IPSO,for multi-objective optimization in edge computing to overcome these issues.To this end,the IPSO algorithm tries to make a trade-off between two important objectives,which are energy consumption minimization and task execution time reduction.Because of global optimal position mutation and dynamic adjustment to inertia weight,the proposed optimization algorithm can effectively distribute tasks among edge nodes.As a result,it reduces the execution time of tasks and energy consumption.In comparative assessments carried out by IPSO with benchmark methods such as Energy-aware Double-fitness Particle Swarm Optimization(EADPSO)and ICBA,IPSO provides better results than these algorithms.For the maximum task size,when compared with the benchmark methods,IPSO reduces the execution time by 17.1%and energy consumption by 31.58%.These results allow the conclusion that IPSO is an efficient and scalable technique for task allocation at the edge environment.It provides peak efficiency while handling scarce resources and variable workloads.展开更多
Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- t...Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.展开更多
In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively....In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively. It is found that the unified hydrodynamics alone can give a good description to the experimental measurements. This is different from the collisions at the maximum RHIC energy of √SNN = 200 GeV or at LHC energy of √SNN= 2.76 TeV, in which the leading particles must be taken into account so that we can properly explain the experimental observations.展开更多
There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin partic...There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.展开更多
The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using N...The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using Newtonian mechanics in conjunction with a fractal Menger sponge space proposal. The new energy equation is thus based on the familiar kinetic energy of Newtonian mechanics scaled classically by a ratio relating our familiar three dimensional space homology to that of a Menger sponge. The remarkable final result is an energy equation identical to that of Einstein’s E=mc2 but divided by 22 so that our new equation reads as . Consequently the energy Lorentz-like reduction factor of percent is in astonishing agreement with cosmological measurements which put the hypothetical dark energy including dark matter at percent of the total theoretical value. In other words our analysis confirms the cosmological data putting the total value of measured ordinary matter and ordinary energy of the entire universe at 4.5 percent. Thus ordinary positive energy which can be measured using conventional methods is the energy of the quantum particle modeled by the Zero set in five dimensions. Dark energy on the other hand is the absolute value of the negative energy of the quantum Schrodinger wave modeled by the empty set also in five dimensions.展开更多
Due to advantages such as rapid heat transfer and thorough mixing, fluidized bed reactors have become highly efficient systems for energy storage processes. However, under high temperatures and reactive conditions, se...Due to advantages such as rapid heat transfer and thorough mixing, fluidized bed reactors have become highly efficient systems for energy storage processes. However, under high temperatures and reactive conditions, severe particle attrition alters both the temperature response characteristics of the bed material and the gas–solid fluidization behavior, which impacts energy storage cycles. This study simulates the multi-field coupling characteristics of an energy storage fluidized bed reactor under attrition conditions, analyzing particle force chains, individual particle reactions, heat transfer, and the effects of operating parameters on energy distribution. The results indicate that particle attrition generates small particles within the bed, leading to uneven temperature and chemical energy distribution. The force chain network becomes more complex yet weaker, reducing the bed's mechanical stability. Increased surface area from particle breakage enhances thermal exchange with the gas, causing an initial rise in reaction rate, which then decreases as local reactants are depleted. Operational parameters such as operating pressure, gas temperature, and inlet velocity significantly impact energy release. These findings provide a theoretical basis for the design and optimization of energy storage fluidized bed reactors.展开更多
The results of experiments on measuring the energy spectra of alpha particles in reactions with heavy ions are presented.The measurements were performed using the high-resolution magnetic analyzer MAVR with beams of ^...The results of experiments on measuring the energy spectra of alpha particles in reactions with heavy ions are presented.The measurements were performed using the high-resolution magnetic analyzer MAVR with beams of ^(48)Ca(280 MeV)and ^(56)Fe(320 and 400 MeV)on ^(181)Ta and ^(238)U targets at an angle of 0°.A strong dependence of the double differential cross sections for production of alpha particles on the atomic number of the target nucleus was observed,which indicates that fast alpha particles are mainly emitted from the target nucleus;this conclusion was also confirmed by calculations within the time-dependent Schrödinger equation approach.An analysis of the obtained experimental data was carried out within the model of moving sources modified to consider the kinematic limits for two-body and three-body exit channels.展开更多
This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images ...This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images of tracer particle,displacement and strain fields can be obtained,and the debris trajectory described.According to the observation of on-site tests,the dynamic rockburst is actually a gas–solid high speed flow process,which is caused by the interaction of rock fragments and surrounding air.With the help of analysis on high speed video and PIV images,the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection.Meanwhile,the elastic energy for these six stages has been calculated to study the energy variation.The results indicate that the rockburst process can be summarized as:an initiating stage,intensive developing stage and gradual decay stage.This research will be helpful for our further understanding of the rockburst mechanism.展开更多
Thermal energy is at the heart of the whole energy chain providing a main linkage between the primary and secondary energy sources. Thermal energy storage (TES) has a pivotal role to play in the energy chain and hen...Thermal energy is at the heart of the whole energy chain providing a main linkage between the primary and secondary energy sources. Thermal energy storage (TES) has a pivotal role to play in the energy chain and hence in future low carbon economy. However, a competitive TES technology requires a number of scientific and technological challenges to be addressed including TES materials, TES components and devices, and integration of TES devices with energy networks and associated dynamic optimization. This paper provides a perspective of TES technology with a focus on TES materials challenges using molten salts based phase change materials for medium and high temperature applications. Two key challenges for the molten salt based TES materials are chemical incompatibility and low thermal conductivity. The use of composite materials provides an avenue to meeting the challenges. Such composite materials consist of a phase change material, a structural supporting material, and a thermal conductivity enhancement material. The properties of the supporting material could determine the dispersion of the thermal con- ductivity enhancement material in the salt. A right combination of the salt, the structural supporting material, and the thermal conductivity enhancement material could give a hierarchical structure that is able to encapsulate the molten salt and give a substantial enhancement in the thermal conductivity. Understanding of the structure-property relationships for the composite is essential for the formulation design and fabrication of the composite materials. Linking materials properties to the system level performance is recommended as a key future direction of research.展开更多
The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow conve...The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency.展开更多
Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy co...Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.展开更多
Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual o...Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual operating conditions. To solve these problems, this paper proposes an optimization method based on user Electricity Anxiety(EA) and Chaotic Space Variation Particle Swarm Optimization(CSVPSO). First, the load is divided into critical load, translation load, shiftable load, and temperature load. Then, on the basis of the different load characteristics,the concept of the user EA degree is presented, and the optimization model of the EI is provided. This paper also presents a CSVPSO algorithm to solve the optimization problem because the traditional particle swarm optimization algorithm takes a long time and particles easily fall into the local optimum. In CSVPSO, the particles with lower fitness value are operated by using cross operation, and velocity variation is performed for particles with a speed lower than the setting threshold. The effectiveness of the proposed method is verified by simulation analysis.Simulation results show that the proposed method can be used to optimize the operation of EI on the basis of the full consideration of the load characteristics. Moreover, the optimization algorithm has high accuracy and computational efficiency.展开更多
The aluminum coating layer was formed on a copper substrate with lacal strain region by using the electrodeposited method. It was found that the particle shape of the coating deposited on the copper substrate is very ...The aluminum coating layer was formed on a copper substrate with lacal strain region by using the electrodeposited method. It was found that the particle shape of the coating deposited on the copper substrate is very sensitive to the strain extent of substrate. The large needle-like aluminum particles were observed on the substrate region with large local strain, indicating that substrate local strain may affect the shape of the deposited particles and promote the nucleation and growth of the deposited particles.展开更多
The data of charged particles produced in proton-proton collisions extracted from Durham particle data group at energy ranges √s = 6.3 - 17 GeV and at 0.9 - 7 TeV are investigated in the framework of Tsallis thermo-s...The data of charged particles produced in proton-proton collisions extracted from Durham particle data group at energy ranges √s = 6.3 - 17 GeV and at 0.9 - 7 TeV are investigated in the framework of Tsallis thermo-statistics and the Vlasov time dynamics. The analysis can describe the experimental data well all-over the considered energies and rapidity intervals. The variation of the collision parameters (chemical potential, entropy index and the time of evolution) is studied and discussed as a function of the final state temperature. According to the obtained result, a scenario, and a script of the time evolution for the particle production is simulated by the pp collision.展开更多
文摘Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.
文摘EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which ideally can be converted to electricity with high efficiency(>80%).However,there exist serious difficulties to realize such conversion in a fusion device,due to the high energy density and high voltage required.To comprehensively describe the progress of the EHL-2 physics design,this work presents preliminary considerations of approaches for achieving energy conversion,highlighting critical issues for further investigation.Specifically,we provide an initial simulation of alpha particle extraction in the EHL-2 ST configuration as a starting point for p-^(11)B fusion energy conversion.
基金Supported by the National Natural Science Foundation of China (20676013)
文摘An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.
基金supported by the the Scientific Startup Foundation of Ocean University of China (No.0900-813586)
文摘High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was observed in the time resolved turbulent fluxes with positive skewness and large kurtosis. The contribution of the large sporadic bursts to the transport losses were estimated. The analysis shows that the turbulent fluxes have different behaviour in different frequency domains and the probability distribution functions (PDFs) of the particle and energy fluxes present two distinct scaling ranges. All these are essentially consistent with the predictions of the self-organized criticality (SOC) model, though further studies are needed.
基金Project supported by the National Natural Science Foundation of China(Nos.11872283,12002242,11902188,and 12102218)the Shanghai Science and Technology Talent Program(No.19YF1417400)the China Postdoctoral Science Foundation(No.2020M680525)。
文摘Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and coalescence,have been widely studied by using the particle-based method named many-body dissipative particle dynamics(MDPD).However,the detailed information on heat transfer needs further description.This paper develops a modified MDPD with energy conservation(MDPDE)by introducing a temperature-dependent long-term attractive interaction.By fitting or deriving the expressions of the strength of the attractive force,the exponent of the weight function in the dissipative force,and the mesoscopic heat friction coefficient about temperature,we calculate the viscosity,self-diffusivity,thermal conductivity,and surface tension,and obtain the Schmidt number Sc,the Prandtl number P r,and the Ohnesorge number Oh for 273 K to 373 K.The simulation data of MDPDE coincide well with the experimental data of water,indicating that our model can be used to simulate the dynamic behaviors of liquid water.Furthermore,we compare the equilibrium contact angle of droplets wetting on solid surfaces with that calculated from three interfacial tensions by MDPDE simulations.The coincident results not only stand for the validation of Young’s equation at mesoscale,but manifest the reliability of our MDPDE model and applicability to the cases with free surfaces.Our model can be extended to study the multiphase flow withcomplex heat and mass transfer.
基金This mission was supported by the China Manned Space Office。
文摘The energetic particle detector on China's space station can determine the energy, flux, and direction of medium-and highenergy protons, electrons, heavy ions, and neutrons within the path of the station's orbit. It also assesses the linear energy transfer(LET)spectra and radiation dose rates generated by these particles. Neutron detection is a significant component of this work, utilizing a new type of Cs_(2)LiYCl_(6): Ce scintillator material along with plastic scintillators as sensors. In-orbit testing has demonstrated the efficient identification of space neutrons and gamma rays(n/γ). This data plays a crucial role in supporting manned space engineering, scientific research, and other related fields.
基金supported by the University Putra Malaysia and the Ministry of Higher Education Malaysia under grantNumber:(FRGS/1/2023/ICT11/UPM/02/3).
文摘As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,for instance,limited processing capability,a few energy sources,and erratic availability being some of the common ones.Correspondingly,these problems require an effective task allocation algorithmto optimize the resources through continued high system performance and dependability in dynamic environments.This paper proposes an improved Particle Swarm Optimization technique,known as IPSO,for multi-objective optimization in edge computing to overcome these issues.To this end,the IPSO algorithm tries to make a trade-off between two important objectives,which are energy consumption minimization and task execution time reduction.Because of global optimal position mutation and dynamic adjustment to inertia weight,the proposed optimization algorithm can effectively distribute tasks among edge nodes.As a result,it reduces the execution time of tasks and energy consumption.In comparative assessments carried out by IPSO with benchmark methods such as Energy-aware Double-fitness Particle Swarm Optimization(EADPSO)and ICBA,IPSO provides better results than these algorithms.For the maximum task size,when compared with the benchmark methods,IPSO reduces the execution time by 17.1%and energy consumption by 31.58%.These results allow the conclusion that IPSO is an efficient and scalable technique for task allocation at the edge environment.It provides peak efficiency while handling scarce resources and variable workloads.
文摘Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.
基金Supported by the Shanghai Key Lab of Modern Optical System
文摘In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively. It is found that the unified hydrodynamics alone can give a good description to the experimental measurements. This is different from the collisions at the maximum RHIC energy of √SNN = 200 GeV or at LHC energy of √SNN= 2.76 TeV, in which the leading particles must be taken into account so that we can properly explain the experimental observations.
文摘There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.
文摘The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using Newtonian mechanics in conjunction with a fractal Menger sponge space proposal. The new energy equation is thus based on the familiar kinetic energy of Newtonian mechanics scaled classically by a ratio relating our familiar three dimensional space homology to that of a Menger sponge. The remarkable final result is an energy equation identical to that of Einstein’s E=mc2 but divided by 22 so that our new equation reads as . Consequently the energy Lorentz-like reduction factor of percent is in astonishing agreement with cosmological measurements which put the hypothetical dark energy including dark matter at percent of the total theoretical value. In other words our analysis confirms the cosmological data putting the total value of measured ordinary matter and ordinary energy of the entire universe at 4.5 percent. Thus ordinary positive energy which can be measured using conventional methods is the energy of the quantum particle modeled by the Zero set in five dimensions. Dark energy on the other hand is the absolute value of the negative energy of the quantum Schrodinger wave modeled by the empty set also in five dimensions.
文摘Due to advantages such as rapid heat transfer and thorough mixing, fluidized bed reactors have become highly efficient systems for energy storage processes. However, under high temperatures and reactive conditions, severe particle attrition alters both the temperature response characteristics of the bed material and the gas–solid fluidization behavior, which impacts energy storage cycles. This study simulates the multi-field coupling characteristics of an energy storage fluidized bed reactor under attrition conditions, analyzing particle force chains, individual particle reactions, heat transfer, and the effects of operating parameters on energy distribution. The results indicate that particle attrition generates small particles within the bed, leading to uneven temperature and chemical energy distribution. The force chain network becomes more complex yet weaker, reducing the bed's mechanical stability. Increased surface area from particle breakage enhances thermal exchange with the gas, causing an initial rise in reaction rate, which then decreases as local reactants are depleted. Operational parameters such as operating pressure, gas temperature, and inlet velocity significantly impact energy release. These findings provide a theoretical basis for the design and optimization of energy storage fluidized bed reactors.
文摘The results of experiments on measuring the energy spectra of alpha particles in reactions with heavy ions are presented.The measurements were performed using the high-resolution magnetic analyzer MAVR with beams of ^(48)Ca(280 MeV)and ^(56)Fe(320 and 400 MeV)on ^(181)Ta and ^(238)U targets at an angle of 0°.A strong dependence of the double differential cross sections for production of alpha particles on the atomic number of the target nucleus was observed,which indicates that fast alpha particles are mainly emitted from the target nucleus;this conclusion was also confirmed by calculations within the time-dependent Schrödinger equation approach.An analysis of the obtained experimental data was carried out within the model of moving sources modified to consider the kinematic limits for two-body and three-body exit channels.
基金supported by the National Natural Science Foundation of China (No.41172270)National Basic Research Program (No.2011CB201201)
文摘This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images of tracer particle,displacement and strain fields can be obtained,and the debris trajectory described.According to the observation of on-site tests,the dynamic rockburst is actually a gas–solid high speed flow process,which is caused by the interaction of rock fragments and surrounding air.With the help of analysis on high speed video and PIV images,the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection.Meanwhile,the elastic energy for these six stages has been calculated to study the energy variation.The results indicate that the rockburst process can be summarized as:an initiating stage,intensive developing stage and gradual decay stage.This research will be helpful for our further understanding of the rockburst mechanism.
基金supported by a Focused Deployment Project of Chinese Academy of Sciences(KGZD-EW-302-1)Key Technologies R&D Program of China(No.2012BAA03B03)UK EPSRC under grants EP/F060955/1 and EP/L014211/1
文摘Thermal energy is at the heart of the whole energy chain providing a main linkage between the primary and secondary energy sources. Thermal energy storage (TES) has a pivotal role to play in the energy chain and hence in future low carbon economy. However, a competitive TES technology requires a number of scientific and technological challenges to be addressed including TES materials, TES components and devices, and integration of TES devices with energy networks and associated dynamic optimization. This paper provides a perspective of TES technology with a focus on TES materials challenges using molten salts based phase change materials for medium and high temperature applications. Two key challenges for the molten salt based TES materials are chemical incompatibility and low thermal conductivity. The use of composite materials provides an avenue to meeting the challenges. Such composite materials consist of a phase change material, a structural supporting material, and a thermal conductivity enhancement material. The properties of the supporting material could determine the dispersion of the thermal con- ductivity enhancement material in the salt. A right combination of the salt, the structural supporting material, and the thermal conductivity enhancement material could give a hierarchical structure that is able to encapsulate the molten salt and give a substantial enhancement in the thermal conductivity. Understanding of the structure-property relationships for the composite is essential for the formulation design and fabrication of the composite materials. Linking materials properties to the system level performance is recommended as a key future direction of research.
基金National Natural Science Foundation of China(No.20676013)
文摘The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency.
基金Supported by the National Natural Science Foundation of China(21176178)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13B02)
文摘Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.
文摘Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual operating conditions. To solve these problems, this paper proposes an optimization method based on user Electricity Anxiety(EA) and Chaotic Space Variation Particle Swarm Optimization(CSVPSO). First, the load is divided into critical load, translation load, shiftable load, and temperature load. Then, on the basis of the different load characteristics,the concept of the user EA degree is presented, and the optimization model of the EI is provided. This paper also presents a CSVPSO algorithm to solve the optimization problem because the traditional particle swarm optimization algorithm takes a long time and particles easily fall into the local optimum. In CSVPSO, the particles with lower fitness value are operated by using cross operation, and velocity variation is performed for particles with a speed lower than the setting threshold. The effectiveness of the proposed method is verified by simulation analysis.Simulation results show that the proposed method can be used to optimize the operation of EI on the basis of the full consideration of the load characteristics. Moreover, the optimization algorithm has high accuracy and computational efficiency.
文摘The aluminum coating layer was formed on a copper substrate with lacal strain region by using the electrodeposited method. It was found that the particle shape of the coating deposited on the copper substrate is very sensitive to the strain extent of substrate. The large needle-like aluminum particles were observed on the substrate region with large local strain, indicating that substrate local strain may affect the shape of the deposited particles and promote the nucleation and growth of the deposited particles.
文摘The data of charged particles produced in proton-proton collisions extracted from Durham particle data group at energy ranges √s = 6.3 - 17 GeV and at 0.9 - 7 TeV are investigated in the framework of Tsallis thermo-statistics and the Vlasov time dynamics. The analysis can describe the experimental data well all-over the considered energies and rapidity intervals. The variation of the collision parameters (chemical potential, entropy index and the time of evolution) is studied and discussed as a function of the final state temperature. According to the obtained result, a scenario, and a script of the time evolution for the particle production is simulated by the pp collision.