From August 12 to 15,the 2025 China International Paper Technology Exhibition(hereina?t er referred to as“CIPTE”)was successfully held in Shanghai.Hosted by the China Paper Association,China Technical Association of...From August 12 to 15,the 2025 China International Paper Technology Exhibition(hereina?t er referred to as“CIPTE”)was successfully held in Shanghai.Hosted by the China Paper Association,China Technical Association of Paper Industry,and China National Pulp and Paper Research Institute Co.,Ltd.(below referred to as“CNPPRI”),and organized by China Pulp and Paper Magazines Publisher,this event received strong support and extensive attention from industry peers.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics ...Food Science and Human Wellness(FSHW ISSN:2213-4530,,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics m...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics m...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics m...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.展开更多
Food Science and Human Wellness (FSHW ISSN:2213-4530, CN 10-1750/TS) publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topic...Food Science and Human Wellness (FSHW ISSN:2213-4530, CN 10-1750/TS) publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to: nutriology, biochemistry, microbiology, immunology and toxicology.展开更多
(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of...(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Saccharification of lignocellulosic wastes is the bottleneck of different bio-based chemical industries.Using enzymes for saccharification of lignocellulosic materials has several advantages over using chemicals.In th...Saccharification of lignocellulosic wastes is the bottleneck of different bio-based chemical industries.Using enzymes for saccharification of lignocellulosic materials has several advantages over using chemicals.In the current work,the application of the Maximyze■ enzyme system,which is industrially used in papermaking,was investigated in the saccharification of paper sludge and fiber dust wastes from the tissue paper industry.For optimizing the saccharification process,the effects of the consistency%,enzyme loading,and incubation time were studied and optimized using the Response Surface Methodology.The effect of these factors on the weight loss of paper sludge and total sugars in the hydrolyzate was studied.High-Performance Liquid Chromatography(HPLC)was used to measure the sugars composition of the hydrolyzate.Under the optimized conditions,~90% and~66% of the fiber dust and paper sludge could be hydrolyzed into sugars,respectively.The sugar composition was 80.23% glucose,10.99% xylose,and 8.65% arabinose based on the total sugars in the case of fiber dust.In comparison,80.63% glucose,8.43% xylose,and 10.75% arabinose were detected in the case of paper sludge.The results showed the applicability of the Maximyze Rcommercial enzymes used in the paper industry for efficient saccharification of paper sludge and fiber dust.The presence of non-cellulosic materials in the paper sludge(residual ink,paper additives,and ash)didn’t affect the activity of the enzymes.The study also showed the potential use of fiber dust as a valuable and clean source of sugars that can be used to prepare different bio-based chemicals.展开更多
The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples w...The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples with the oxide demonstrate a long-lasting photoluminescence(PL)under sunlight and ultra-violet(UV)illumination.Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions.The short-wavelength part of the band is ascribed to the cellulose-related luminescence,while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl_(2)O_(4):Eu,Dy phosphor.The dependency of the PL intensity on oxide concentration suggests the reabsorption of cellulose emission by the oxide and vice versa.The study of the dielectric properties of composite papers shows the presence of dielectric relaxations at low temperatures(T~−50℃).Similar cellulose materials to those studied can be considered as alternatives for artificial petroleum-based polymers.Low cost,eco-friendliness,biocompatibility,and the simplicity of recycling are among the main advantages of these materials.They are produced from the cellulose which is one of the most abundant renewable materials in nature.The data on the mechanical,dielectric,and optical properties indicate that the papers studied can be used in flexible lighting devices,WLEDs,coating,markers,labels,etc.展开更多
On March 28,the white paper“Human Rights in Xizang in the New Era”was released.The white paper provides a comprehensive and systematic account of the remarkable achievements made in Xizang's human rights cause u...On March 28,the white paper“Human Rights in Xizang in the New Era”was released.The white paper provides a comprehensive and systematic account of the remarkable achievements made in Xizang's human rights cause under the leadership of the CPC's(Communist Party of China)strategy for governing Xizang in the new era,showcasing the development and progress of human rights in Xizang.展开更多
Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environment...Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environmental situation.This issue increases the concern for the environment and encourages the usage of alternative materials.Cellulose nanofibrils(CNF)are abundant and biodegradable,which makes them ideal candidates to replace plastic coatings.The ability to form H-bonds between the hydroxyl groups makes coated paper with CNF have good strength,but poor barrier properties.The barrier properties can be improved by grafting DMAEMA or HEMA onto CNF(CNF-g-PDMAEMA and CNF-g-PHEMA,respectively).Thus,the objective of this study was to modify CNF chemically to enhance the barrier properties of the food packaging paper.It was found that paper coated with CNFg-PDMAEMA and CNF-g-PHEMA exhibited improvements in mechanical and barrier properties while maintaining the desired viscosity for the coating process.The water contact angle increased for paper coated with CNF-g-PHEMA and CNF-g-PDMAEMA,reaching a maximum of 97.51°and 92.58°,respectively with the decreasing Cobb_(60) values by 49% and 11%.The oil absorption was also reduced for both coated papers compared to the blank paper.Mechanical properties improved,as indicated by a 3% increase in tensile strength for paper coated with CNF-g-PHEMA and a 5% for paper coated with CNF-g-PDMAEMA.The results indicated significant potential for the application of modified CNF in coatings for food packaging paper.Noteworthy,the grafting process should be improved to enhance the mechanical and barrier properties of the coated paper.展开更多
Acta Geologica Sinica(English Edition)is a bimonthly,SCI-indexed academic journal produced by the Geological Society of China.With the latest 2023 Impact Factor of 2.1,it has long been indexed by many international da...Acta Geologica Sinica(English Edition)is a bimonthly,SCI-indexed academic journal produced by the Geological Society of China.With the latest 2023 Impact Factor of 2.1,it has long been indexed by many international databases and websites,such as SCI,CA,BIG,etc.Internationally,the journal cooperates with John Wiley&Sons,Inc.to publish the electronic version;all papers can be downloaded online.Contributors wishing to submit,read,enquire and download can log in via http://mc.manuscriptcentral.com/ags.In recent years,with the mining economy developing fast,geoscientists have been involved in all scientific activities from astronomy and the deep earth to oceanography and polar regions,from the macro to the micro world,and from the past to the future,leading to great achievements.In order to facilitate publication of these important scientific achievements,Acta Geologica Sinica(English Edition)intends to invite more open-dated submissions for review papers.展开更多
Interest in the use of cellulose nanomaterial’s continues to grow,both in research and industry,not only due to the abundance of raw materials,low toxicity and sustainability,but also due to the attractive physical a...Interest in the use of cellulose nanomaterial’s continues to grow,both in research and industry,not only due to the abundance of raw materials,low toxicity and sustainability,but also due to the attractive physical and chemical properties that make nanocelluloses useful for a wide range of end-use applications.Among the large number of potential uses,and nanocelluloses modification and processing strategies,the chosen topic of this review focuses exclusively on plant-derived cellulose microfibers/nanofibers(CNF)and cellulose nanocrystals(CNC)processed into 2D structures—nanopapers and nanofilms—fabricated as self-standing films or applied as coatings.The end uses considered are:combinationwith standard papers and cardboards for packaging,mendingmaterial for the conservation and protection of cellulosic heritage artifacts,and component-parts of complex designs of functional devices for energy harvesting and storage.In these contexts,nanocelluloses provide high mechanical and ecofriendly properties,transparency and tunable haze,as well as flexibility/bendability in the resulting films.All these characteristics make them extremely attractive to a market seeking for sustainable,light weight and low cost raw materials for the production of goods.General perspectives on the current advantages and disadvantages of using CNF and CNC in the selected areas are also reviewed.展开更多
The development of high-voltage tandem thin-film supercapacitors(TFSCs)has been limited by the issues such as expensive electrode materials,indispensable commercial separators and metal current collectors,and complex ...The development of high-voltage tandem thin-film supercapacitors(TFSCs)has been limited by the issues such as expensive electrode materials,indispensable commercial separators and metal current collectors,and complex manufacturing processes.Herein,we develop a potentially scalable approach to address all these issues by using CO_(2) laser pyrolysis of polyimide(PI)paper into the three-dimensional(3D)morphology of graphene paper in air.The formation process and mechanism of PI to graphene were clarified by microstructure and chemical characterizations and reaction molecular dynamics.The influences of laser scan density,power,defocus,and scan speed on the sheet resistance,longitudinal resistance,Raman spectra,and electrochemical performance of graphene papers were systematically investigated.Results indicate that high-quality graphene papers with ultralow sheet resistance(4.88Ω·square^(-1))and longitudinal resistance(3.46Ω)and extra-large crystalline size(96.1 nm)were achieved under optimized process parameters.The graphene papers can simultaneously serve as active electrode materials,current collectors,and interconnectors.The active area of electrodes is defined by a PI mask,with the help of which a hydrogel electrolyte functions as a separator.The assembled graphene paper-based TFSCs demonstrate outstanding electrochemical performance and mechanical flexibility,with the areal capacitance of 54.5 mF·cm^(-2),energy density of 10.9µWh·cm^(-2),and cycle stability retention of 86.9%over 15000 cycles.Moreover,all the tandem metal-free TFSCs,ranging from 1 to 160 cells,show excellent performance uniformity.The output voltage increases linearly from 1.2 V to 200 V.Significantly,the 160-tandem TFSCs exhibit a high voltage density within a compact volume of∼3.8 cm^(3).This work provides an avenue for achieving tandem metal-free TFSCs in a simple and efficient manner.展开更多
文摘From August 12 to 15,the 2025 China International Paper Technology Exhibition(hereina?t er referred to as“CIPTE”)was successfully held in Shanghai.Hosted by the China Paper Association,China Technical Association of Paper Industry,and China National Pulp and Paper Research Institute Co.,Ltd.(below referred to as“CNPPRI”),and organized by China Pulp and Paper Magazines Publisher,this event received strong support and extensive attention from industry peers.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.
文摘Food Science and Human Wellness (FSHW ISSN:2213-4530, CN 10-1750/TS) publishes original research papers demonstrating the latest advancement of multidisciplinary subjects related to food science and human health.Topics may include but not limited to: nutriology, biochemistry, microbiology, immunology and toxicology.
文摘(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
基金funding of the current work by the Science,Technology,and Innovation Funding Authority(STDF),Egypt,project no.46104:“Recycling of sludge wastes from paper industry via green technologies”.
文摘Saccharification of lignocellulosic wastes is the bottleneck of different bio-based chemical industries.Using enzymes for saccharification of lignocellulosic materials has several advantages over using chemicals.In the current work,the application of the Maximyze■ enzyme system,which is industrially used in papermaking,was investigated in the saccharification of paper sludge and fiber dust wastes from the tissue paper industry.For optimizing the saccharification process,the effects of the consistency%,enzyme loading,and incubation time were studied and optimized using the Response Surface Methodology.The effect of these factors on the weight loss of paper sludge and total sugars in the hydrolyzate was studied.High-Performance Liquid Chromatography(HPLC)was used to measure the sugars composition of the hydrolyzate.Under the optimized conditions,~90% and~66% of the fiber dust and paper sludge could be hydrolyzed into sugars,respectively.The sugar composition was 80.23% glucose,10.99% xylose,and 8.65% arabinose based on the total sugars in the case of fiber dust.In comparison,80.63% glucose,8.43% xylose,and 10.75% arabinose were detected in the case of paper sludge.The results showed the applicability of the Maximyze Rcommercial enzymes used in the paper industry for efficient saccharification of paper sludge and fiber dust.The presence of non-cellulosic materials in the paper sludge(residual ink,paper additives,and ash)didn’t affect the activity of the enzymes.The study also showed the potential use of fiber dust as a valuable and clean source of sugars that can be used to prepare different bio-based chemicals.
基金financed by the National Research Foundation of Ukraine(Project No.2022.01/0168).
文摘The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples with the oxide demonstrate a long-lasting photoluminescence(PL)under sunlight and ultra-violet(UV)illumination.Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions.The short-wavelength part of the band is ascribed to the cellulose-related luminescence,while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl_(2)O_(4):Eu,Dy phosphor.The dependency of the PL intensity on oxide concentration suggests the reabsorption of cellulose emission by the oxide and vice versa.The study of the dielectric properties of composite papers shows the presence of dielectric relaxations at low temperatures(T~−50℃).Similar cellulose materials to those studied can be considered as alternatives for artificial petroleum-based polymers.Low cost,eco-friendliness,biocompatibility,and the simplicity of recycling are among the main advantages of these materials.They are produced from the cellulose which is one of the most abundant renewable materials in nature.The data on the mechanical,dielectric,and optical properties indicate that the papers studied can be used in flexible lighting devices,WLEDs,coating,markers,labels,etc.
文摘On March 28,the white paper“Human Rights in Xizang in the New Era”was released.The white paper provides a comprehensive and systematic account of the remarkable achievements made in Xizang's human rights cause under the leadership of the CPC's(Communist Party of China)strategy for governing Xizang in the new era,showcasing the development and progress of human rights in Xizang.
基金supported by Hibah Penelitian Fundamental Reguler Kementerian Pendidikan,Kebudayaan,Riset dan Teknologi under funding year of 2024 with contract number:051/E5/PG.02.00.PL/2024NKB-903/UN2.RST/HKP.05.00/2024.
文摘Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environmental situation.This issue increases the concern for the environment and encourages the usage of alternative materials.Cellulose nanofibrils(CNF)are abundant and biodegradable,which makes them ideal candidates to replace plastic coatings.The ability to form H-bonds between the hydroxyl groups makes coated paper with CNF have good strength,but poor barrier properties.The barrier properties can be improved by grafting DMAEMA or HEMA onto CNF(CNF-g-PDMAEMA and CNF-g-PHEMA,respectively).Thus,the objective of this study was to modify CNF chemically to enhance the barrier properties of the food packaging paper.It was found that paper coated with CNFg-PDMAEMA and CNF-g-PHEMA exhibited improvements in mechanical and barrier properties while maintaining the desired viscosity for the coating process.The water contact angle increased for paper coated with CNF-g-PHEMA and CNF-g-PDMAEMA,reaching a maximum of 97.51°and 92.58°,respectively with the decreasing Cobb_(60) values by 49% and 11%.The oil absorption was also reduced for both coated papers compared to the blank paper.Mechanical properties improved,as indicated by a 3% increase in tensile strength for paper coated with CNF-g-PHEMA and a 5% for paper coated with CNF-g-PDMAEMA.The results indicated significant potential for the application of modified CNF in coatings for food packaging paper.Noteworthy,the grafting process should be improved to enhance the mechanical and barrier properties of the coated paper.
文摘Acta Geologica Sinica(English Edition)is a bimonthly,SCI-indexed academic journal produced by the Geological Society of China.With the latest 2023 Impact Factor of 2.1,it has long been indexed by many international databases and websites,such as SCI,CA,BIG,etc.Internationally,the journal cooperates with John Wiley&Sons,Inc.to publish the electronic version;all papers can be downloaded online.Contributors wishing to submit,read,enquire and download can log in via http://mc.manuscriptcentral.com/ags.In recent years,with the mining economy developing fast,geoscientists have been involved in all scientific activities from astronomy and the deep earth to oceanography and polar regions,from the macro to the micro world,and from the past to the future,leading to great achievements.In order to facilitate publication of these important scientific achievements,Acta Geologica Sinica(English Edition)intends to invite more open-dated submissions for review papers.
基金funded by Consejo Nacional de Investigaciones Cientificas y Tecnicas(CONICET,Argentina),grant number PIP 0991by Universidad Nacional de Mar del Plata(UNMdP,Argentina),grant number 15/G686-ING690/23.
文摘Interest in the use of cellulose nanomaterial’s continues to grow,both in research and industry,not only due to the abundance of raw materials,low toxicity and sustainability,but also due to the attractive physical and chemical properties that make nanocelluloses useful for a wide range of end-use applications.Among the large number of potential uses,and nanocelluloses modification and processing strategies,the chosen topic of this review focuses exclusively on plant-derived cellulose microfibers/nanofibers(CNF)and cellulose nanocrystals(CNC)processed into 2D structures—nanopapers and nanofilms—fabricated as self-standing films or applied as coatings.The end uses considered are:combinationwith standard papers and cardboards for packaging,mendingmaterial for the conservation and protection of cellulosic heritage artifacts,and component-parts of complex designs of functional devices for energy harvesting and storage.In these contexts,nanocelluloses provide high mechanical and ecofriendly properties,transparency and tunable haze,as well as flexibility/bendability in the resulting films.All these characteristics make them extremely attractive to a market seeking for sustainable,light weight and low cost raw materials for the production of goods.General perspectives on the current advantages and disadvantages of using CNF and CNC in the selected areas are also reviewed.
基金funded by the National Natural Science Foundation of China(Grant Nos.52205457 and 52422511)the National Key R&D Program of China(Grant No.2022YFB4701000)+3 种基金the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2024A1515010043,2025A1515010890 and 2022B1515120011)the Young Talent Support Project of Guangzhou Association for Science and Technology(Grant No.QT2024-010)the Guangzhou Basic and Applied Basic Research Foundation(Grant No.SL2024A04J01501)the State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment(Grant No.JMDZ202303).
文摘The development of high-voltage tandem thin-film supercapacitors(TFSCs)has been limited by the issues such as expensive electrode materials,indispensable commercial separators and metal current collectors,and complex manufacturing processes.Herein,we develop a potentially scalable approach to address all these issues by using CO_(2) laser pyrolysis of polyimide(PI)paper into the three-dimensional(3D)morphology of graphene paper in air.The formation process and mechanism of PI to graphene were clarified by microstructure and chemical characterizations and reaction molecular dynamics.The influences of laser scan density,power,defocus,and scan speed on the sheet resistance,longitudinal resistance,Raman spectra,and electrochemical performance of graphene papers were systematically investigated.Results indicate that high-quality graphene papers with ultralow sheet resistance(4.88Ω·square^(-1))and longitudinal resistance(3.46Ω)and extra-large crystalline size(96.1 nm)were achieved under optimized process parameters.The graphene papers can simultaneously serve as active electrode materials,current collectors,and interconnectors.The active area of electrodes is defined by a PI mask,with the help of which a hydrogel electrolyte functions as a separator.The assembled graphene paper-based TFSCs demonstrate outstanding electrochemical performance and mechanical flexibility,with the areal capacitance of 54.5 mF·cm^(-2),energy density of 10.9µWh·cm^(-2),and cycle stability retention of 86.9%over 15000 cycles.Moreover,all the tandem metal-free TFSCs,ranging from 1 to 160 cells,show excellent performance uniformity.The output voltage increases linearly from 1.2 V to 200 V.Significantly,the 160-tandem TFSCs exhibit a high voltage density within a compact volume of∼3.8 cm^(3).This work provides an avenue for achieving tandem metal-free TFSCs in a simple and efficient manner.