设R是整环,若R是整闭的,则R是Prüfer整环当且仅当Kr(R,b)是平坦R[X]-模;当且仅当Kr(R,b)是平坦R-模(Aaderson D F,Bobbs D E.J Pure Appl Algebra,1989,61:107-122.).给出这一定理在w-版本下的陈述形式,即若R是整闭整环,则R是P v M...设R是整环,若R是整闭的,则R是Prüfer整环当且仅当Kr(R,b)是平坦R[X]-模;当且仅当Kr(R,b)是平坦R-模(Aaderson D F,Bobbs D E.J Pure Appl Algebra,1989,61:107-122.).给出这一定理在w-版本下的陈述形式,即若R是整闭整环,则R是P v MD当且仅当Kr(R,v c)是w(R[X])-平坦R[X]-模;当且仅当Kr(R,v c)是w-平坦R-模.展开更多
Let D be an integral domain, ψ(D) (resp., t-ψ(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over 19, c(f...Let D be an integral domain, ψ(D) (resp., t-ψ(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over 19, c(f) be the ideal of D generated by the coefficients of f ∈ D[X], and Nv = {f∈ D[X] | c(f)v = D}. In this paper, we study integral domains D in which w-P(D) t-ψ(D), t-ψ(D) w-P(D), or t-ψ(D) = w-P(D). We also study the relationship between t-ψ(D) and ψ(D[X]Nv), and characterize when t-ψ(A + XB[X]) w-P(A + XB[X]) holds for a proper extension A c B of integral domains.展开更多
Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata th...Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata theorem states that if D is Noetherian,then D is a Krull domain;it has also been investigated when D is a Dedekind domain.We study integral domains D such that D^[w] is a Krull domain.We also provide an example of an integral domain D such that D ■ D ■ D^[w],t-dim(D)=1,D is a Priifer multiplication domain with v-dim(D)=2,and D^[w] is a UFD.展开更多
文摘设R是整环,若R是整闭的,则R是Prüfer整环当且仅当Kr(R,b)是平坦R[X]-模;当且仅当Kr(R,b)是平坦R-模(Aaderson D F,Bobbs D E.J Pure Appl Algebra,1989,61:107-122.).给出这一定理在w-版本下的陈述形式,即若R是整闭整环,则R是P v MD当且仅当Kr(R,v c)是w(R[X])-平坦R[X]-模;当且仅当Kr(R,v c)是w-平坦R-模.
文摘Let D be an integral domain, ψ(D) (resp., t-ψ(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over 19, c(f) be the ideal of D generated by the coefficients of f ∈ D[X], and Nv = {f∈ D[X] | c(f)v = D}. In this paper, we study integral domains D in which w-P(D) t-ψ(D), t-ψ(D) w-P(D), or t-ψ(D) = w-P(D). We also study the relationship between t-ψ(D) and ψ(D[X]Nv), and characterize when t-ψ(A + XB[X]) w-P(A + XB[X]) holds for a proper extension A c B of integral domains.
基金supported by the Academic Research Fund of Hoseo University in 2017(no.2017-0047).
文摘Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata theorem states that if D is Noetherian,then D is a Krull domain;it has also been investigated when D is a Dedekind domain.We study integral domains D such that D^[w] is a Krull domain.We also provide an example of an integral domain D such that D ■ D ■ D^[w],t-dim(D)=1,D is a Priifer multiplication domain with v-dim(D)=2,and D^[w] is a UFD.