为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable conv...为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及模型大小相比原YOLOv8n基线模型分别降低了12.5%和11.3%,同时精确度(precision)及平均精度均值(mean average precision,m AP)相较于原模型分别提高了4.5和1.9个百分点,优于其他对比目标检测算法,可为小麦病害检测无人机等移动端检测装备的部署和应用提供参考。展开更多
为了快速准确地检测麦穗并计数,特提出改进YOLOv5s的麦穗检测与计数的轻量网络模型PY-bckbone。首先,基于PP-LCNet轻量网络结构,对YOLO(you only look once)v5s的特征提取网络进行替换,减少网络参数和计算量;其次,为提高检测精度,在网...为了快速准确地检测麦穗并计数,特提出改进YOLOv5s的麦穗检测与计数的轻量网络模型PY-bckbone。首先,基于PP-LCNet轻量网络结构,对YOLO(you only look once)v5s的特征提取网络进行替换,减少网络参数和计算量;其次,为提高检测精度,在网络特征提取处加入坐标注意力机制,并且对颈部特征融合处的卷积层做改动,提升模型在复杂麦田背景下检测目标的能力,最后,将改进后的模型与其它经典模型进行麦穗检测与计数实验对比。结果表明:均值平均精度值为94.2%,分别比Faster RCNN、 SSD、YOLOv4-tiny、Yolov5s提高的百分点数为6.79、32.75、22.08、1.1;参数量比YOLOv5s减少了28%,计算量减少了42%。与传统检测网络相比,该模型在麦田复杂场景下具有较好较快的检测能力。展开更多
文摘为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及模型大小相比原YOLOv8n基线模型分别降低了12.5%和11.3%,同时精确度(precision)及平均精度均值(mean average precision,m AP)相较于原模型分别提高了4.5和1.9个百分点,优于其他对比目标检测算法,可为小麦病害检测无人机等移动端检测装备的部署和应用提供参考。