期刊文献+

基于YOLOv5s的轻量化车辆检测算法研究 被引量:1

Research on Lightweight Vehicle Detection Algorithm Based on YOLOv5s
在线阅读 下载PDF
导出
摘要 近年来,随着深度学习技术的快速发展,自动驾驶技术在智能交通领域受到越来越多的关注。为了提高车辆检测的实时性、降低对内存和算力资源的要求,文章针对YOLOv5s算法进行了轻量化改进。首先,引入PP-LCNet轻量化神经网络替换YOLOv5s的骨干网络,构建了轻量化模型YOLOv5s-PP;其次,改进了损失函数,采用EIOU Loss替代原有的CIOU Loss,提高了边框回归的效率和精度;最后,引入SimOTA策略进行动态标签匹配,以适应复杂多变的道路环境。实验结果表明,改进后的YOLOv5s-PPES算法在检测速度和参数量上都有显著提升,整体性能更加优越。 In recent years,with the rapid development of deep learning technology,autonomous driving technology has received increasing attention in the field of intelligent transportation.To enhance the real-time performance of vehicle detection and reduce the requirements for memory and computational resources,this paper proposes a lightweight improvement to the YOLOv5s algorithm.Firstly,the PP-LCNet lightweight neural network is introduced to replace the backbone network of YOLOv5s,resulting in the construction of the lightweight model YOLOv5s-PP.Secondly,the loss function is improved by adopting EIOU Loss to replace the original CIOU Loss,which improves the efficiency and accuracy of bounding box regression.Lastly,the SimOTA strategy is introduced for dynamic label assignment to adapt to complex and diverse road environments.Experimental results demonstrate that,the improved YOLOv5s-PPES algorithm exhibits significant improvements in detection speed and parameter count,with overall superior performance.
作者 汪香念 刘玉梦 胡青 WANG Xiangnian;LIU Yumeng;HU Qing(School of Mechanical Engineering,Shangqiu Institute of Technology,Shangqiu 476000,China)
出处 《汽车实用技术》 2025年第10期55-60,共6页 Automobile Applied Technology
关键词 车辆检测 轻量化 YOLOv5s PP-LCNet vehicle detection lightweight YOLOv5s PP-LCNet
  • 相关文献

参考文献8

二级参考文献32

共引文献136

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部