The pneumatic rotary position system, in which an electro-pneumatic proportional flow valve controled a rotary cylinder, was studied, and its mathematical model was built. The model indicated that the controlled pneum...The pneumatic rotary position system, in which an electro-pneumatic proportional flow valve controled a rotary cylinder, was studied, and its mathematical model was built. The model indicated that the controlled pneumatic system had disadvantages such as inherent non-linearity and variations of system parameters with working points. In order to improve the dynamic performance of the system, feed forward compensation self-tuning pole-placement strategy was adopted to place the poles of the system in a desired position in real time, and a recursive least square method with fixed forgetting factors was also used in the parameter estimation. Experimental results show that the steady state error of the pneumatic rotary position system is within 3% and the identified system parameters can be converged in 5 s. Under different loads, the controlled system has an excellent tracking performance and robustness of anti-disturbance.展开更多
Denurcioslu et al. presented a method named continuous-time general-ized predictive control(CGPC) in 1991, which is obtained on the basis of the mini-mization of a quadratic cost function. However, In engineering prac...Denurcioslu et al. presented a method named continuous-time general-ized predictive control(CGPC) in 1991, which is obtained on the basis of the mini-mization of a quadratic cost function. However, In engineering practice, the behav-ior of a control system is generally evaluated by observing its dynamic response con-cerned mainly with the clused-loup poles uf the system. A CGPC algorithm withclosed-loop pole-placement is propused in this paper which advances the results byDemircioglu et al.展开更多
n this paper an adaptive robust algorithm for pole-placement design is proposed. It consists of the refined--optimal IV parameter estimator and a robust pole--placement controller. The robustness of the algorithm mean...n this paper an adaptive robust algorithm for pole-placement design is proposed. It consists of the refined--optimal IV parameter estimator and a robust pole--placement controller. The robustness of the algorithm means that the output of the controlled plant can be stabilized in the presence of unmodelled dynamics and bounded unmeasurable output noise. Simulation results show the effeciency of the algorithm.展开更多
The aim of the present work is to illustrate the application of mixed H2/H∞ control theory with Pole-Placement in de- signing controller for semi-active suspension system. It is well known that the ride comfort is im...The aim of the present work is to illustrate the application of mixed H2/H∞ control theory with Pole-Placement in de- signing controller for semi-active suspension system. It is well known that the ride comfort is improved by reducing vehicle body acceleration generated by road disturbance. In order to study this phenomenon, Two Degrees of Freedom (DOF) in state space vehicle model was built in. However, the role of H is to minimize the disturbance effect on the output while H2 is used to improve the input of controller. Linear Matrix Inequality (LMI) technique is used to calculate the dynamic controller parameters. The simulation results show that the H2 and H techniques can effectively control the vibration of vehicle system where the reduction of suspension working space, dynamic tire load and body acceleration. Moreover, the simulation results show that the (RMS) of suspension working space was reduced by 44.5%, body acceleration and dynamic tire load are reduced by 18.5% and 20% respectively.展开更多
For controllable systems,a computationally simplified adaptive pole-placement control is introduced,which leads the input and output of the closed-loop system to be bounded.Compared with previous work,modifications to...For controllable systems,a computationally simplified adaptive pole-placement control is introduced,which leads the input and output of the closed-loop system to be bounded.Compared with previous work,modifications to parameter estimates may stop at specially designed stopping times and the number of modifications decreases from infinite to finite.Further,the dimension of parameter to be modified is reduced so that the computational load is gradually lessened.展开更多
基金Project(50375034) supported by the National Natural Science Foundation of China
文摘The pneumatic rotary position system, in which an electro-pneumatic proportional flow valve controled a rotary cylinder, was studied, and its mathematical model was built. The model indicated that the controlled pneumatic system had disadvantages such as inherent non-linearity and variations of system parameters with working points. In order to improve the dynamic performance of the system, feed forward compensation self-tuning pole-placement strategy was adopted to place the poles of the system in a desired position in real time, and a recursive least square method with fixed forgetting factors was also used in the parameter estimation. Experimental results show that the steady state error of the pneumatic rotary position system is within 3% and the identified system parameters can be converged in 5 s. Under different loads, the controlled system has an excellent tracking performance and robustness of anti-disturbance.
文摘Denurcioslu et al. presented a method named continuous-time general-ized predictive control(CGPC) in 1991, which is obtained on the basis of the mini-mization of a quadratic cost function. However, In engineering practice, the behav-ior of a control system is generally evaluated by observing its dynamic response con-cerned mainly with the clused-loup poles uf the system. A CGPC algorithm withclosed-loop pole-placement is propused in this paper which advances the results byDemircioglu et al.
文摘n this paper an adaptive robust algorithm for pole-placement design is proposed. It consists of the refined--optimal IV parameter estimator and a robust pole--placement controller. The robustness of the algorithm means that the output of the controlled plant can be stabilized in the presence of unmodelled dynamics and bounded unmeasurable output noise. Simulation results show the effeciency of the algorithm.
文摘The aim of the present work is to illustrate the application of mixed H2/H∞ control theory with Pole-Placement in de- signing controller for semi-active suspension system. It is well known that the ride comfort is improved by reducing vehicle body acceleration generated by road disturbance. In order to study this phenomenon, Two Degrees of Freedom (DOF) in state space vehicle model was built in. However, the role of H is to minimize the disturbance effect on the output while H2 is used to improve the input of controller. Linear Matrix Inequality (LMI) technique is used to calculate the dynamic controller parameters. The simulation results show that the H2 and H techniques can effectively control the vibration of vehicle system where the reduction of suspension working space, dynamic tire load and body acceleration. Moreover, the simulation results show that the (RMS) of suspension working space was reduced by 44.5%, body acceleration and dynamic tire load are reduced by 18.5% and 20% respectively.
基金Project supported by the National Natural Science Foundation of China.
文摘For controllable systems,a computationally simplified adaptive pole-placement control is introduced,which leads the input and output of the closed-loop system to be bounded.Compared with previous work,modifications to parameter estimates may stop at specially designed stopping times and the number of modifications decreases from infinite to finite.Further,the dimension of parameter to be modified is reduced so that the computational load is gradually lessened.